Rheological Properties of poly(Lactic acid) Modified by Cellulose Acetate Propionate

被引:1
作者
Kimura, Takeyoshi [1 ]
Takeuchi, Tomoki [1 ]
Phulkerd, Panitha [1 ]
Pichaipanich, Pornchanok [1 ,2 ]
Kugimoto, Daisuke [3 ]
Kouda, Shingo [3 ]
Kida, Takumitsu [1 ,4 ]
Yamaguchi, Masayuki [1 ]
机构
[1] Japan Adv Inst Sci & Technol, Sch Mat Sci, 1-1 Asahidai, Nomi, Ishikawa 9231292, Japan
[2] Naresuan Univ, Fac Sci, Dept Chem, Phitsanulok 65000, Thailand
[3] Tosoh Corp, Polymer Mat Res Lab, 1-8 Kasumi, Yokaichi, Tokyo 5108540, Japan
[4] Univ Shiga Prefecture, Sch Engn, Dept Mat Sci, 2500 Hassaka cho, Hikone City, Shiga 5228533, Japan
关键词
Poly(Lactic acid); Cellulose Acetate Propionate; Elongational Viscosity; Polymer Blend; Viscoelastic Property; INCOMPATIBLE POLYMER BLENDS; INDUCED CRYSTALLIZATION; ELONGATIONAL VISCOSITY; VISCOELASTIC BEHAVIOR; FLOW; POLYETHYLENE; COMPOSITES; FIBER; MODEL; PROCESSABILITY;
D O I
10.1007/s10924-023-03104-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The effect of the addition of cellulose acetate propionate (CAP) on the rheological properties of poly(lactic acid) (PLA) was studied. Although the blends of CAP and PLA had phase-separated structures, a small amount of CAP did dissolve in the PLA. Therefore, the oscillatory shear moduli in the low-frequency region were greatly increased by the addition of CAP. Neat CAP exhibited marked strain hardening in transient elongational viscosity. This was attributed to the presence of CAP crystals at the processing temperature. The CAP chains that dissolved in the PLA also provided strain hardening in elongational viscosity for the blends, demonstrating that CAP, as a biomass-based plastic, is a good processing modifier for PLA.
引用
收藏
页码:1849 / 1859
页数:11
相关论文
共 56 条
  • [31] Otsuki Y, 2020, POLYM J, V52, P529, DOI 10.1038/s41428-019-0286-0
  • [32] LINEAR RHEOLOGY OF VISCOELASTIC EMULSIONS WITH INTERFACIAL-TENSION
    PALIERNE, JF
    [J]. RHEOLOGICA ACTA, 1990, 29 (03) : 204 - 214
  • [33] Poly(lactic acid) modifications
    Rasal, Rahul M.
    Janorkar, Amol V.
    Hirt, Douglas E.
    [J]. PROGRESS IN POLYMER SCIENCE, 2010, 35 (03) : 338 - 356
  • [34] Ray S.S., 2022, Sustainable Polylactide-Based Blends, DOI [10.1016/C2020-0-00729-2, DOI 10.1016/C2020-0-00729-2]
  • [35] Epoxy functionalized poly(lactide) reactive modifier for blown film applications
    Schneider, Jeff
    Shi, Xiangke
    Manjure, Shilpa
    Gravier, Daniel
    Narayan, Ramani
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2015, 132 (28)
  • [36] VISCOELASTIC BEHAVIOR OF CONCENTRATED SPHERICAL SUSPENSIONS
    SHIKATA, T
    PEARSON, DS
    [J]. JOURNAL OF RHEOLOGY, 1994, 38 (03) : 601 - 616
  • [37] Sin L.T., 2019, Polylactic acid: a practical guide for the processing, manufacturing, and applications of Pla
  • [38] Effect of thermal modification on rheological properties of polyethylene blends
    Siriprumpoonthum, Monchai
    Nobukawa, Shogo
    Satoh, Yasuo
    Sasaki, Hiroko
    Yamaguchi, Masayuki
    [J]. JOURNAL OF RHEOLOGY, 2014, 58 (02) : 449 - 465
  • [39] Thermal and hydrolytic degradation kinetics of PLA in the molten state
    Speranza, V.
    De Meo, A.
    Pantani, R.
    [J]. POLYMER DEGRADATION AND STABILITY, 2014, 100 : 37 - 41
  • [40] Chemical Modification and Foam Processing of Polylactide (PLA)
    Standau, Tobias
    Zhao, Chunjing
    Castellon, Svenja Murillo
    Bonten, Christian
    Altstaedt, Volker
    [J]. POLYMERS, 2019, 11 (02)