Thermal Hall effect and the Wiedemann-Franz law in Chern insulator

被引:1
作者
Wang, Anxin [1 ]
Qin, Tao [1 ]
机构
[1] Anhui Univ, Sch Phys & Optoelect Engn, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
thermal Hall effect; quantum Hall effect; Chern insulator; Landauer-Buttike formula; 73.22.-f; 73.43.-f; 73.63.-b; REALIZATION; ELECTRONS; MODEL;
D O I
10.1088/1674-1056/ace158
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Thermal Hall effect, where a transverse temperature difference is generated by implementing a longitudinal temperature gradient and an external magnetic field in the perpendicular direction to systems, is a useful tool to reveal transport properties of quantum materials. A systematic study of the thermal Hall effect in a Chern insulator is still lacking. Here, using the Landauer-Buttiker formula, we investigated the thermal Hall transport of the Harper-Hofstadter model with flux phi = 1/2 and its generalizations. We demonstrated that the Wiedemann-Franz law, which states that the thermal Hall conductivity is linearly proportional to the quantum Hall conductivity in the low temperature limit, is still valid in this Chern insulator, and that the thermal Hall conductivity can be used to characterize the topological properties of quantum materials.
引用
收藏
页数:6
相关论文
共 35 条
  • [1] Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices
    Aidelsburger, M.
    Atala, M.
    Lohse, M.
    Barreiro, J. T.
    Paredes, B.
    Bloch, I.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (18)
  • [2] Strain-Modulated Graphene Heterostructure as a Valleytronic Current Switch
    Chauwin, Maverick
    Siu, Zhuo Bin
    Jalil, Mansoor Bin Abdul
    [J]. PHYSICAL REVIEW APPLIED, 2022, 17 (02)
  • [3] Effect of magnetic field on electron transport in HgTe/CdTe quantum wells: Numerical analysis
    Chen, Jiang-chai
    Wang, Jian
    Sun, Qing-feng
    [J]. PHYSICAL REVIEW B, 2012, 85 (12)
  • [4] Spin Nernst effect and Nernst effect in two-dimensional electron systems
    Cheng, Shu-guang
    Xing, Yanxia
    Sun, Qing-feng
    Xie, X. C.
    [J]. PHYSICAL REVIEW B, 2008, 78 (04):
  • [5] Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices
    Dean, C. R.
    Wang, L.
    Maher, P.
    Forsythe, C.
    Ghahari, F.
    Gao, Y.
    Katoch, J.
    Ishigami, M.
    Moon, P.
    Koshino, M.
    Taniguchi, T.
    Watanabe, K.
    Shepard, K. L.
    Hone, J.
    Kim, P.
    [J]. NATURE, 2013, 497 (7451) : 598 - 602
  • [6] Semi-Dirac point in the Hofstadter spectrum
    Delplace, P.
    Montambaux, G.
    [J]. PHYSICAL REVIEW B, 2010, 82 (03):
  • [7] Experimental reconstruction of the Berry curvature in a Floquet Bloch band
    Flaeschner, N.
    Rem, B. S.
    Tarnowski, M.
    Vogel, D.
    Luehmann, D. -S.
    Sengstock, K.
    Weitenberg, C.
    [J]. SCIENCE, 2016, 352 (6289) : 1091 - 1094
  • [8] Chiral phonons in the pseudogap phase of cuprates
    Grissonnanche, G.
    Theriault, S.
    Gourgout, A.
    Boulanger, M-E
    Lefrancois, E.
    Ataei, A.
    Laliberte, F.
    Dion, M.
    Zhou, J-S
    Pyon, S.
    Takayama, T.
    Takagi, H.
    Doiron-Leyraud, N.
    Taillefer, L.
    [J]. NATURE PHYSICS, 2020, 16 (11) : 1108 - +
  • [9] Giant thermal Hall conductivity in the pseudogap phase of cuprate superconductors
    Grissonnanche, G.
    Legros, A.
    Badoux, S.
    Lefrancois, E.
    Zatko, V.
    Lizaire, M.
    Laliberte, F.
    Gourgout, A.
    Zhou, J. -S.
    Pyon, S.
    Takayama, T.
    Takagi, H.
    Ono, S.
    Doiron-Leyraud, N.
    Taillefer, L.
    [J]. NATURE, 2019, 571 (7765) : 376 - +