Leveraging microRNAs for cellular therapy

被引:2
作者
Hasiuk, Marko [1 ,2 ,3 ]
Dolz, Marianne [1 ,2 ,3 ]
Marone, Romina [1 ,2 ,3 ]
Jeker, Lukas T. [1 ,2 ,3 ]
机构
[1] Basel Univ Hosp, Dept Biomed, Hebelstr 20, CH-4031 Basel, Switzerland
[2] Univ Basel, Hebelstr 20, CH-4031 Basel, Switzerland
[3] Basel Univ Hosp, Transplantat Immunol & Nephrol, Petersgraben 4, CH-4031 Basel, Switzerland
基金
欧洲研究理事会;
关键词
microRNA; Cell therapy; T cell; miR-17-92; Synthetic biology; Non-coding RNA; T-CELLS IMPROVES; VERSUS-HOST-DISEASE; ANTITUMOR-ACTIVITY; CANCER REGRESSION; IMMUNE CELLS; IN-VIVO; CD8(+); RNA; CAR; MIR-17-92;
D O I
10.1016/j.imlet.2023.08.005
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Owing to Karl Landsteiner's discovery of blood groups, blood transfusions became safe cellular therapies in the early 1900s. Since then, cellular therapy made great advances from transfusions with unmodified cells to today's commercially available chimeric antigen receptor (CAR) T cells requiring complex manufacturing. Modern cellular therapy products can be improved using basic knowledge of cell biology and molecular genetics. Emerging genome engineering tools are becoming ever more versatile and precise and thus catalyze rapid progress towards programmable therapeutic cells that compute input and respond with defined output. Despite a large body of literature describing important functions of non-coding RNAs including microRNAs (miRNAs), the vast majority of cell engineering efforts focuses on proteins. However, miRNAs form an important layer of posttranscriptional regulation of gene expression. Here, we highlight examples of how miRNAs can successfully be incorporated into engineered cellular therapies.
引用
收藏
页码:27 / 35
页数:9
相关论文
共 128 条
[1]   IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor [J].
Adachi, Keishi ;
Kano, Yosuke ;
Nagai, Tomohiko ;
Okuyama, Namiko ;
Sakoda, Yukimi ;
Tamada, Koji .
NATURE BIOTECHNOLOGY, 2018, 36 (04) :346-+
[2]   Predicting effective microRNA target sites in mammalian mRNAs [J].
Agarwal, Vikram ;
Bell, George W. ;
Nam, Jin-Wu ;
Bartel, David P. .
ELIFE, 2015, 4
[3]   A uniform system for microRNA annotation [J].
Ambros, V ;
Bartel, B ;
Bartel, DP ;
Burge, CB ;
Carrington, JC ;
Chen, XM ;
Dreyfuss, G ;
Eddy, SR ;
Griffiths-Jones, S ;
Marshall, M ;
Matzke, M ;
Ruvkun, G ;
Tuschl, T .
RNA, 2003, 9 (03) :277-279
[4]   Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors [J].
Anzalone, Andrew V. ;
Koblan, Luke W. ;
Liu, David R. .
NATURE BIOTECHNOLOGY, 2020, 38 (07) :824-844
[5]   CAR T therapy beyond cancer: the evolution of a living drug [J].
Baker, Daniel J. ;
Arany, Zoltan ;
Baur, Joseph A. ;
Epstein, Jonathan A. ;
June, Carl H. .
NATURE, 2023, 619 (7971) :707-715
[6]   miR-150-Mediated Foxo1 Regulation Programs CD8+ T Cell Differentiation [J].
Ban, Young Ho ;
Oh, Se-Chan ;
Seo, Sang-Hwan ;
Kim, Seok-Min ;
Choi, In-Pyo ;
Greenberg, Philip D. ;
Chang, Jun ;
Kim, Tae-Don ;
Ha, Sang-Jun .
CELL REPORTS, 2017, 20 (11) :2598-2611
[7]   Metazoan MicroRNAs [J].
Bartel, David P. .
CELL, 2018, 173 (01) :20-51
[8]   Diverse functions of miR-17-92 cluster microRNAs in T helper cells [J].
Baumjohann, Dirk .
CANCER LETTERS, 2018, 423 :147-152
[9]   MicroRNA-mediated regulation of T helper cell differentiation and plasticity [J].
Baumjohann, Dirk ;
Ansel, K. Mark .
NATURE REVIEWS IMMUNOLOGY, 2013, 13 (09) :666-678
[10]   CRISPR/Cas-based Human T cell Engineering: Basic Research and Clinical Application [J].
Bernard, Bettina E. ;
Landmann, Emmanuelle ;
Jeker, Lukas T. ;
Schumann, Kathrin .
IMMUNOLOGY LETTERS, 2022, 245 :18-28