STS-DGNN: Vehicle Trajectory Prediction via Dynamic Graph Neural Network With Spatial-Temporal Synchronization

被引:1
|
作者
Li, Feng-Jie [1 ]
Zhang, Chun-Yang [1 ]
Chen, C. L. Philip [2 ]
机构
[1] Fuzhou Univ, Sch Comp & Data Sci, Fuzhou 350025, Peoples R China
[2] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
~Autonomous driving; dynamic graph; graph neural network (GNN); spatial-temporal dependencies; vehicle trajectory prediction; MOTION PREDICTION; ATTENTION NETWORK; MODEL;
D O I
10.1109/TIM.2023.3307179
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate prediction of vehicle trajectories is crucial to the safety and comfort of autonomous vehicles. Although several graph-based models have exhibited substantial progress in acquiring spatiotemporal dependencies among vehicles in the driving environment, the potential for additional exploration in this domain persists. The main reason is that they concentrated on independently capturing the spatial relations and temporal dependencies, neglecting to incorporate the temporal feature into the spatial feature for co-training, which limits their ability to yield satisfactory predictive accuracy. Typically, spatial and temporal correlations are coupled and should be modeled jointly. Inspired by this, a novel dynamic graph neural network with spatial-temporal synchronization (STS-DGNN) for vehicle trajectory prediction is proposed, which constructs the driving scene as dynamic graphs and can jointly extract spatial-temporal features. Specifically, low-order and high-order dynamics of vehicle trajectories are considered collaboratively in a one-stage framework rather than independently modeling the spatial relationship and temporal correlations of vehicles in two-stage models. The proposed model also considers the dynamic nature of graph sequence by utilizing gate recurrent unit (GRU) to update the graph neural network (GNN) parameters dynamically. The spatial-temporal features are subsequently conveyed to convolutional neural networks (CNNs) and processed by a multilayer perceptron (MLP) to generate the ultimate trajectories. Finally, to illustrate the effectiveness of the STSDGNN model, the model is assessed on three well-known datasets, namely highD, EWAP, and UCY. The results confirm that our model performs better at making predictions than cuttingedge models. The visualization results intuitively explain that our method can extract sophisticated and subtle multivehicle interactions, resulting in accurate predictions.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Graph-Based Spatial-Temporal Convolutional Network for Vehicle Trajectory Prediction in Autonomous Driving
    Sheng, Zihao
    Xu, Yunwen
    Xue, Shibei
    Li, Dewei
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 17654 - 17665
  • [2] Vehicle Trajectory Prediction Based on Dynamic Graph Neural Network
    Cai, Jijing
    Zhu, Han
    Feng, Hailin
    Wen, Long
    Wang, Wei
    Lv, Meilei
    Fang, Kai
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 67 - 72
  • [3] Spatial-Temporal Attentive LSTM for Vehicle-Trajectory Prediction
    Jiang, Rui
    Xu, Hongyun
    Gong, Gelian
    Kuang, Yong
    Liu, Zhikang
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (07)
  • [4] Vehicle Interactive Dynamic Graph Neural Network-Based Trajectory Prediction for Internet of Vehicles
    Yang, Mingxia
    Zhang, Boliang
    Wang, Tingting
    Cai, Jijing
    Weng, Xiang
    Feng, Hailin
    Fang, Kai
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (22): : 35777 - 35790
  • [5] Semi-dynamic spatial-temporal graph neural network for traffic state prediction in waterways
    Li, Le
    Pan, Mingyang
    Liu, Zongying
    Sun, Hui
    Zhang, Ruolan
    OCEAN ENGINEERING, 2024, 293
  • [6] STAGNN: a spatial-temporal attention graph neural network for network traffic prediction
    Luo, Yonghua
    Ning, Qian
    Chen, Bingcai
    Zhou, Xinzhi
    Huang, Linyu
    INTERNATIONAL JOURNAL OF COMMUNICATION NETWORKS AND DISTRIBUTED SYSTEMS, 2024, 30 (04) : 413 - 432
  • [7] DSTGCN: Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction
    Hu, Jia
    Lin, Xianghong
    Wang, Chu
    IEEE SENSORS JOURNAL, 2022, 22 (13) : 13116 - 13124
  • [8] Intention-Aware Vehicle Trajectory Prediction Based on Spatial-Temporal Dynamic Attention Network for Internet of Vehicles
    Chen, Xiaobo
    Zhang, Huanjia
    Zhao, Feng
    Hu, Yu
    Tan, Chenkai
    Yang, Jian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 19471 - 19483
  • [9] Vehicle Trajectory Prediction With Interaction Regions and Spatial-Temporal Attention
    Cheng, Dengyang
    Gu, Xiang
    Qian, Cong
    Du, Chaonan
    Wang, Jin
    IEEE ACCESS, 2023, 11 : 130850 - 130859
  • [10] Graph Spatial-Temporal Transformer Network for Traffic Prediction
    Zhao, Zhenzhen
    Shen, Guojiang
    Wang, Lei
    Kong, Xiangjie
    BIG DATA RESEARCH, 2024, 36