Upper and lower bounds for the maximal Lyapunov exponent of singularly perturbed linear switching systems

被引:6
作者
Chitour, Yacine [1 ,4 ]
Haidar, Ihab [2 ]
Mason, Paolo [1 ]
Sigalotti, Mario [3 ]
机构
[1] Univ Paris Saclay, Lab Signaux & Syst, CNRS, CentraleSupelec, F-91190 Gif Sur Yvette, France
[2] ENSEA, Lab Quartz, EA 7393, Cergy Pontoise, France
[3] Sorbonne Univ, Inria, CNRS, Lab Jacques Louis Lions, Paris, France
[4] Inst Univ France IUF, Paris, France
关键词
Switching systems; Singular perturbation; Exponential stability; Maximal Lyapunov exponent; Differential inclusions; STABILITY; PERTURBATIONS;
D O I
10.1016/j.automatica.2023.111151
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider the problem of determining the stability properties, and in particular assessing the exponential stability, of a singularly perturbed linear switching system. One of the challenges of this problem arises from the intricate interplay between the small parameter of singular perturbation and the rate of switching as both tend to zero. Our approach consists in characterizing suitable auxiliary linear systems that provide lower and upper bounds for the asymptotics of the maximal Lyapunov exponent of the linear switching system as the parameter of the singular perturbation tends to zero. & COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 20 条
[1]   Exponential stability of singularly perturbed switched systems with time delay [J].
Alwan, Mohamad ;
Liu, Xinzhi ;
Ingalls, Brian .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2008, 2 (03) :913-921
[2]  
Aubin J.P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
[3]  
Aubin J.-P., 2012, Differential Inclusions: Set-Valued Maps and Viability Theory, V264
[4]   A note on stability conditions for planar switched systems [J].
Balde, Moussa ;
Boscain, Ugo ;
Mason, Paolo .
INTERNATIONAL JOURNAL OF CONTROL, 2009, 82 (10) :1882-1888
[5]   Stability of planar switched systems: The linear single input case [J].
Boscain, U .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (01) :89-112
[6]  
Della Rossa Matteo, SIAM J CONTROL OPTIM
[7]   Stability Analysis of Singularly Perturbed Switched Linear Systems [J].
El Hachemi, Fouad ;
Sigalotti, Mario ;
Daafouz, Jamal .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (08) :2116-2121
[8]   Polytope Lyapunov Functions for Stable and for Stabilizable LSS [J].
Guglielmi, Nicola ;
Laglia, Linda ;
Protasov, Vladimir .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2017, 17 (02) :567-623
[9]  
Kato Tosio., 1966, GRUNDLEHREN MATH WIS
[10]   Singular perturbation theory for DC-DC converters and application to PFC converters [J].
Kimball, Jonathan W. ;
Krein, Philip T. .
2007 IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-6, 2007, :882-887