Tensor networks for quantum machine learning

被引:8
|
作者
Rieser, Hans-Martin [1 ]
Koester, Frank [1 ]
Raulf, Arne Peter [1 ]
机构
[1] Deutsch Zentrum Luft & Raumfahrt, Inst AI Safety & Secur, Ulm St Augustin, Germany
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2023年 / 479卷 / 2275期
关键词
tensor network; quantum machine learning; quantum computing; encoding; BARREN PLATEAUS; OPTIMIZATION; COMPRESSION;
D O I
10.1098/rspa.2023.0218
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Once developed for quantum theory, tensor networks (TNs) have been established as a successful machine learning (ML) paradigm. Now, they have been ported back to the quantum realm in the emerging field of quantum ML to assess problems that classical computers are unable to solve efficiently. Their nature at the interface between physics and ML makes TNs easily deployable on quantum computers. In this review article, we shed light on one of the major architectures considered to be predestined for variational quantum ML. In particular, we discuss how layouts like matrix product state, projected entangled pair states, tree tensor networks and multi-scale entanglement renormalization ansatz can be mapped to a quantum computer, how they can be used for ML and data encoding and which implementation techniques improve their performance.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Parameterized quantum circuits as machine learning models
    Benedetti, Marcello
    Lloyd, Erika
    Sack, Stefan
    Fiorentini, Mattia
    QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
  • [42] Fourier Series Weight in Quantum Machine Learning
    Atchade-Adelomou, Parfait
    Larson, Kent
    ADVANCES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, 2024, 4 (01): : 1866 - 1891
  • [43] An Overview of Quantum Machine Learning Research in China
    Li, Luning
    Zhang, Xuchen
    Cui, Zhicheng
    Xu, Weiming
    Xu, Xuesen
    Wang, Jianyu
    Shu, Rong
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [44] Quantum machine learning in high energy physics
    Guan, Wen
    Perdue, Gabriel
    Pesah, Arthur
    Schuld, Maria
    Terashi, Koji
    Vallecorsa, Sofia
    Vlimant, Jean-Roch
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (01):
  • [45] Teaching Quantum Machine Learning in Computer Science
    De Luca, Gennaro
    Chen, Yinong
    2023 IEEE 15TH INTERNATIONAL SYMPOSIUM ON AUTONOMOUS DECENTRALIZED SYSTEM, ISADS, 2023, : 189 - 195
  • [46] Tensor ring optimized quantum-enhanced tensor neural networks
    Debanjan Konar
    Dheeraj Peddireddy
    Bijaya K. Panigrahi
    Vaneet Aggarwal
    Quantum Machine Intelligence, 2025, 7 (1)
  • [47] Quantum state preparation using tensor networks
    Melnikov, Ar A.
    Termanova, A. A.
    Dolgov, S., V
    Neukart, F.
    Perelshtein, M. R.
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (03):
  • [48] Simulating quantum computation by contracting tensor networks
    Markov, Igor L.
    Shi, Yaoyun
    SIAM JOURNAL ON COMPUTING, 2008, 38 (03) : 963 - 981
  • [49] Application of Quantum Tensor Networks for Protein Classification
    Kundu, Debarshi
    Ghosh, Archisman
    Ekambaram, Srinivasan
    Wang, Jian
    Dokholyan, Nikolay
    Ghosh, Swaroop
    PROCEEDING OF THE GREAT LAKES SYMPOSIUM ON VLSI 2024, GLSVLSI 2024, 2024, : 132 - 137
  • [50] New perspectives on structural health monitoring using unsupervised quantum machine learning
    Alves, Victor Higino Meneguitte
    Gomes, Raphael Fortes Infante
    Cury, Alexandre
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 229