Functional imaging: translation of radiomics and artificial intelligence into clinical practice

被引:0
作者
Saase, Victor [1 ]
Bonekamp, David [1 ]
机构
[1] DKFZ Heidelberg, Abt Radiol, Heidelberg, Germany
来源
ONKOLOGIE | 2023年 / 29卷 / 12期
关键词
Quality of health care; Outcome and process assessment; health care; Radiology; Prognosis; Medical oncology;
D O I
10.1007/s00761-023-01391-0
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Radiomics and artificial intelligence (AI) are among the most important topics in radiologic research of recent years. However, translation from research to practice has so far only occurred sporadically.Objective: The current and future clinical benefits of radiomics and AI in oncology are critically examined in the present article.Materials and methodsA literature search was performed.Results: AI systems are already available for radiologic oncology practice and are increasingly used in diagnostics. However, systems that provide referrers with information for prognosis, treatment response, or progression are not yet approved and will not become available in the foreseeable future.Conclusion: Radiomics and AI already show practical value for improving radiologic diagnostic quality. However, to develop reliable systems that can provide quantitative statements useful for patient treatment, there is still a lack of larger validation studies and financial incentives for manufacturers.
引用
收藏
页码:1052 / 1059
页数:8
相关论文
共 31 条
[1]   Explainability for artificial intelligence in healthcare: a multidisciplinary perspective [J].
Amann, Julia ;
Blasimme, Alessandro ;
Vayena, Effy ;
Frey, Dietmar ;
Madai, Vince I. .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (01)
[2]   Predicting cancer outcomes with radiomics and artificial intelligence in radiology [J].
Bera, Kaustav ;
Braman, Nathaniel ;
Gupta, Amit ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2022, 19 (02) :132-146
[3]   Comparison of PET and CT radiomics for prediction of local tumor control in head and neck squamous cell carcinoma [J].
Bogowicz, Marta ;
Riesterer, Oliver ;
Stark, Luisa Sabrina ;
Studer, Gabriela ;
Unkelbach, Jan ;
Guckenberger, Matthias ;
Tanadini-Lang, Stephanie .
ACTA ONCOLOGICA, 2017, 56 (11) :1531-1536
[4]   Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values [J].
Bonekamp, David ;
Kohl, Simon ;
Wiesenfarth, Manuel ;
Schelb, Patrick ;
Radtke, Jan Philipp ;
Goetz, Michael ;
Kickingereder, Philipp ;
Yaqubi, Kaneschka ;
Hitthaler, Bertram ;
Gaehlert, Nils ;
Kuder, Tristan Anselm ;
Deister, Fenja ;
Freitag, Martin ;
Hohenfellner, Markus ;
Hadaschik, Boris A. ;
Schlemmer, Heinz-Peter ;
Maier-Hein, Klaus H. .
RADIOLOGY, 2018, 289 (01) :128-137
[5]   The Dark Side of Radiomics: On the Paramount Importance of Publishing Negative Results [J].
Buvat, Irene ;
Orlhac, Fanny .
JOURNAL OF NUCLEAR MEDICINE, 2019, 60 (11) :1543-1544
[6]   18F-fluorodeoxyglucose positron-emission tomography (FDG-PET)-Radiomics of metastatic lymph nodes and primary tumor in non-small cell lung cancer (NSCLC) - A prospective externally validated study [J].
Carvalho, Sara ;
Leijenaar, Ralph T. H. ;
Troost, Esther G. C. ;
van Timmeren, Janna E. ;
Oberije, Cary ;
van Elmpt, Wouter ;
de Geus-Oei, Lioe-Fee ;
Bussink, Johan ;
Lambin, Philippe .
PLOS ONE, 2018, 13 (03)
[7]  
Centre hospitalier de l'Universit? de Montr?al (CHUM), 2022, PSMA PET DEEP RAD BI
[8]  
Chang G-C., 2022, VAL OPT MULT MOD NEV
[9]   A risk model for digital breast tomosynthesis to predict breast cancer and guide clinical care [J].
Eriksson, Mikael ;
Destounis, Stamatia ;
Czene, Kamila ;
Zeiberg, Andrew ;
Day, Robert ;
Conant, Emily F. ;
Schilling, Kathy ;
Hall, Per .
SCIENCE TRANSLATIONAL MEDICINE, 2022, 14 (644)
[10]   Current practical experience with artificial intelligence in clinical radiology: a survey of the European Society of Radiology [J].
Becker C.D. ;
Kotter E. ;
Fournier L. ;
Martí-Bonmatí L. .
INSIGHTS INTO IMAGING, 2022, 13 (01)