Pseudo-contrast cardiac CT angiography derived from non-contrast CT using conditional generative adversarial networks

被引:1
作者
Killekar, Aditya [1 ]
Kwiecinski, Jacek [2 ]
Kruk, Mariusz [3 ]
Kepka, Cezary [3 ]
Shanbhag, Aakash [1 ]
Dey, Damini [4 ]
Slomka, Piotr [1 ]
机构
[1] Cedars Sinai Med Ctr, Dept Med, Div Artificial Intelligence, Los Angeles, CA 90048 USA
[2] Natl Inst Cardiol, Dept Intervent Cardiol & Angiol, Warsaw, Poland
[3] Natl Inst Cardiol Warsaw, Dept Coronary Artery & Struct Heart Dis, Warsaw, Poland
[4] Cedars Sinai Med Ctr, Dept Med, Biomed Imaging Res Inst, Los Angeles, CA 90048 USA
来源
MEDICAL IMAGING 2023 | 2023年 / 12464卷
基金
美国国家卫生研究院;
关键词
contrast CT synthesis; deep learning; medical image processing; image synthesis; generative adversarial networks; pseudo-contrast CT;
D O I
10.1117/12.2654592
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contrast computed tomography angiography (CTA) is utilized in wide variety of applications ranging from clinical practices to emerging technologies. However, radiation exposure, the necessity of contrast administration, as well as the overall complexity of the acquisition are major limitations. We aimed to generate pseudo-contrast CTA, utilizing a conditional generative adversarial network (cGAN). We synthesize realistic contrast CTA from a perfectly registered non-contrast thin slice computed tomography (NCCT). Our method may substitute contrast CTA with a pseudo-contrast CTA for certain clinical applications such as the assessments of cardiac anatomy.
引用
收藏
页数:7
相关论文
共 15 条
  • [1] Coronary Computed Tomography Angiography From Clinical Uses to Emerging Technologies JACC State-of-the-Art Review
    Abdelrahman, Khaled M.
    Chen, Marcus Y.
    Dey, Amit K.
    Virmani, Renu
    Finn, Aloke V.
    Khamis, Ramzi Y.
    Choi, Andrew D.
    Min, James K.
    Williams, Michelle C.
    Buckler, Andrew J.
    Taylor, Charles A.
    Rogers, Campbell
    Samady, Habib
    Antoniades, Charalambos
    Shaw, Leslee J.
    Budoff, Matthew J.
    Hoffmann, Udo
    Blankstein, Ron
    Narula, Jagat
    Mehta, Nehal N.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 76 (10) : 1226 - 1243
  • [2] MedGAN: Medical image translation using GANs
    Armanious, Karim
    Jiang, Chenming
    Fischer, Marc
    Kuestner, Thomas
    Nikolaou, Konstantin
    Gatidis, Sergios
    Yang, Bin
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 79
  • [3] Learning Implicit Brain MRI Manifolds with Deep Learning
    Bermudez, Camilo
    Plassard, Andrew J.
    Davis, Larry T.
    Newton, Allen T.
    Resnick, Susan M.
    Landman, Bennett A.
    [J]. MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [4] Generating synthetic contrast enhancement from non-contrast chest computed tomography using a generative adversarial network
    Choi, Jae Won
    Cho, Yeon Jin
    Ha, Ji Young
    Lee, Seul Bi
    Lee, Seunghyun
    Choi, Young Hun
    Cheon, Jung-Eun
    Kim, Woo Sun
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [5] Fihn SD, 2012, CIRCULATION, V126, P3097, DOI 10.1161/CIR.0b013e3182776f83
  • [6] Generative Adversarial Networks
    Goodfellow, Ian
    Pouget-Abadie, Jean
    Mirza, Mehdi
    Xu, Bing
    Warde-Farley, David
    Ozair, Sherjil
    Courville, Aaron
    Bengio, Yoshua
    [J]. COMMUNICATIONS OF THE ACM, 2020, 63 (11) : 139 - 144
  • [7] Hensel M, 2017, ADV NEUR IN, V30
  • [8] Image-to-Image Translation with Conditional Adversarial Networks
    Isola, Phillip
    Zhu, Jun-Yan
    Zhou, Tinghui
    Efros, Alexei A.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5967 - 5976
  • [9] Kingma DP, 2014, ADV NEUR IN, V27
  • [10] elastix: A Toolbox for Intensity-Based Medical Image Registration
    Klein, Stefan
    Staring, Marius
    Murphy, Keelin
    Viergever, Max A.
    Pluim, Josien P. W.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (01) : 196 - 205