Rainbow vertex pair-pancyclicity of strongly edge-colored graphs

被引:1
作者
Zhao, Peixue [1 ]
Huang, Fei [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
edge-coloring; strongly edge-colored graph; rainbow cycle; rainbow vertex pair-pancyclicity; CYCLES; PATHS;
D O I
10.48550/arXiv.2210.0586
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
An edge-colored graph is rainbow if no two edges of the graph have the same color. An edge-colored graph Gc is called properly colored if every two adjacent edges of Gc receive distinct colors in Gc. A strongly edge-colored graph is a proper edge-colored graph such that every path of length 3 is rainbow. We call an edge-colored graph Gc rainbow vertex pair-pancyclic if any two vertices in Gc are contained in a rainbow cycle of length pound for each pound with 3 < pound < n. In this paper, we show that every strongly edge-colored graph Gc of order n with minimum degree delta >= 2n3 + 1 is rainbow vertex pair-pancyclicity.
引用
收藏
页数:11
相关论文
共 17 条
  • [1] Cycles and Paths in Edge-Colored Graphs with Given Degrees
    Abouelaoualim, A.
    Das, Kinkar Ch.
    de la Vega, W. Fernandez
    Karpinski, M.
    Manoussakis, Y.
    Martinhon, C. A.
    Saad, R.
    [J]. JOURNAL OF GRAPH THEORY, 2010, 64 (01) : 63 - 86
  • [2] Bondy J. A., 2008, GRAPH THEORY
  • [3] Long rainbow paths and rainbow cycles in edge colored graphs - A survey
    Chen, He
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 317 : 187 - 192
  • [4] Note on rainbow cycles in edge-colored graphs
    Chen, Xiaozheng
    Li, Xueliang
    [J]. DISCRETE MATHEMATICS, 2022, 345 (12)
  • [5] Proper vertex-pancyclicity of edge-colored complete graphs without joint monochromatic triangles
    Chen, Xiaozheng
    Li, Xueliang
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 294 : 167 - 180
  • [6] Proper vertex-pancyclicity of edge-colored complete graphs without monochromatic triangles
    Chen, Xiaozheng
    Huang, Fei
    Yuan, Jinjiang
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 265 : 199 - 203
  • [7] Rainbow Hamiltonian cycles in strongly edge-colored graphs
    Cheng, Yangyang
    Sun, Qiang
    Tan, Ta Sheng
    Wang, Guanghui
    [J]. DISCRETE MATHEMATICS, 2019, 342 (04) : 1186 - 1190
  • [8] On odd rainbow cycles in edge-colored graphs
    Czygrinow, Andrzej
    Molla, Theodore
    Nagle, Brendan
    Oursler, Roy
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2021, 94
  • [9] Rainbow triangles and cliques in edge-colored graphs
    Ehard, Stefan
    Mohr, Elena
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2020, 84
  • [10] On sufficient conditions for rainbow cycles in edge-colored graphs
    Fujita, Shinya
    Ning, Bo
    Xu, Chuandong
    Zhang, Shenggui
    [J]. DISCRETE MATHEMATICS, 2019, 342 (07) : 1956 - 1965