Inequality constrained stochastic nonlinear optimization via active-set sequential quadratic programming
被引:9
|
作者:
Na, Sen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
Int Comp Sci Inst, Berkeley, CA 94704 USAUniv Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
Na, Sen
[1
,2
]
Anitescu, Mihai
论文数: 0引用数: 0
h-index: 0
机构:
Argonne Natl Lab, Math & Comp Sci Div, Argonne, WI USAUniv Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
Anitescu, Mihai
[3
]
Kolar, Mladen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Booth Sch Business, Chicago, IL USAUniv Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
Kolar, Mladen
[4
]
机构:
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[2] Int Comp Sci Inst, Berkeley, CA 94704 USA
[3] Argonne Natl Lab, Math & Comp Sci Div, Argonne, WI USA
[4] Univ Chicago, Booth Sch Business, Chicago, IL USA
We study nonlinear optimization problems with a stochastic objective and deterministic equality and inequality constraints, which emerge in numerous applications including finance, manufacturing, power systems and, recently, deep neural networks. We propose an active-set stochastic sequential quadratic programming (StoSQP) algorithm that utilizes a differentiable exact augmented Lagrangian as the merit function. The algorithm adaptively selects the penalty parameters of the augmented Lagrangian, and performs a stochastic line search to decide the stepsize. The global convergence is established: for any initialization, the KKT residuals converge to zero almost surely. Our algorithm and analysis further develop the prior work of Na et al. (Math Program, 2022. https://doi.org/10.1007/s10107-022-01846-z). Specifically, we allow nonlinear inequality constraints without requiring the strict complementary condition; refine some of designs in Na et al. (2022) such as the feasibility error condition and the monotonically increasing sample size; strengthen the global convergence guarantee; and improve the sample complexity on the objective Hessian. We demonstrate the performance of the designed algorithm on a subset of nonlinear problems collected in CUTEst test set and on constrained logistic regression problems.
机构:
Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Peoples R ChinaShanghai Univ, Coll Sci, Shanghai, Peoples R China
Jian, Jin-Bao
Tang, Chun-Ming
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Coll Sci, Shanghai, Peoples R China
Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Peoples R ChinaShanghai Univ, Coll Sci, Shanghai, Peoples R China
Tang, Chun-Ming
Hu, Qing-Jie
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Business Coll, Dept Informat, Changsha, Hunan, Peoples R ChinaShanghai Univ, Coll Sci, Shanghai, Peoples R China
Hu, Qing-Jie
Zheng, Hai-Yan
论文数: 0引用数: 0
h-index: 0
机构:
Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Peoples R ChinaShanghai Univ, Coll Sci, Shanghai, Peoples R China
机构:
Univ Chicago, Comm Comp & Appl Math, Chicago, IL 60637 USAUniv Chicago, Comm Comp & Appl Math, Chicago, IL 60637 USA
Fang, Yuchen
Na, Sen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Int Comp Sci Inst, Berkeley, CA 94720 USA
Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USAUniv Chicago, Comm Comp & Appl Math, Chicago, IL 60637 USA
Na, Sen
Mahoney, Michael W.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Int Comp Sci Inst, Berkeley, CA 94720 USA
Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USAUniv Chicago, Comm Comp & Appl Math, Chicago, IL 60637 USA
Mahoney, Michael W.
Kolar, Mladen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Calif, Marshall Sch Business, Los Angeles, CA 90089 USAUniv Chicago, Comm Comp & Appl Math, Chicago, IL 60637 USA
机构:
Univ Sao Paulo, Inst Math & Stat, Dept Comp Sci, Sao Paulo, SP, BrazilUniv Sao Paulo, Inst Math & Stat, Dept Comp Sci, Sao Paulo, SP, Brazil
Birgin, E. G.
Bueno, L. F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Sao Paulo, Inst Sci & Technol, Sao Jose Dos Campos, SP, BrazilUniv Sao Paulo, Inst Math & Stat, Dept Comp Sci, Sao Paulo, SP, Brazil
Bueno, L. F.
Martinez, J. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estadual Campinas, Inst Math Stat & Sci Comp, Dept Appl Math, Campinas, SP, BrazilUniv Sao Paulo, Inst Math & Stat, Dept Comp Sci, Sao Paulo, SP, Brazil