Comparison of heat-transfer performance of a flat-plate pulsating heat pipe based on heating orientation and cross- sectional shape of the pipe

被引:2
|
作者
Yasuda, Yosuke [1 ]
Nabeshima, Fumika [2 ]
Horiuchi, Keisuke [1 ]
Nagai, Hiroki [1 ]
机构
[1] Hitachi Ltd, Res & Dev Grp, 832-2 Horiguchi, Hitachinaka, Ibaraki 3120034, Japan
[2] Tohoku Univ, Inst Fluid Sci, 2-1-1 Katahira, Aoba Ku, Sendai, Miyagi 9808577, Japan
来源
MECHANICAL ENGINEERING JOURNAL | 2023年 / 10卷 / 02期
关键词
Pulsating heat pipe; Oscillating heat pipe; HFO; R1336mzz(Z); Closed-end; Flat-plate; CLOSED-LOOP; FLOW VISUALIZATION; LIMIT; PART;
D O I
10.1299/mej.22-00415
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The effects of cross-sectional shapes of flat-plate pulsating heat pipes (PHPs) on heat-transfer performance were experimentally investigated. The flat-plate PHP, made of aluminum alloy, has a closed-end serpentine channel with 22 turns. Four PHP samples with different channel shape (square or circular), the hydraulic diameter of the channel (1 or 1.2 mm), and plate thickness (3 or 2 mm) were prepared. The working fluid in the channel is R1336mzz(Z), and its filling ratio was increased from 30 mass% to 70 mass% in increments of 10 mass%. The heating section of the PHP is heated at power from 20 to 180 W in one of three heating orientations (vertical bottom, top, and horizontal) and the cooling section of the PHP is kept at 40 degrees C. Equivalent thermal conductivity is calculated from temperature on the surface of the PHP and heat transport rate. The experimental results indicate that the larger the cross-sectional area of the channel-wall material, the more likely it is that working-fluid oscillation will occur in the case of the top and horizontal heating orientations. Within the scope of this study, The PHP sample with a 1.2x1.2-mm square channel, the thickness of 3 mm, and filling ratio of 40 mass% has the highest equivalent thermal conductivity, namely, 2880 W/(m center dot K) at heat-transport rate Q of 146 W in top -heating orientation, 2750 W/(m center dot K) at Q = 146 W in horizontal-heating orientation, and 6540 W/(m center dot K) at Q = 36 W in bottom-heating orientation. As for that PHP, when Q is 80 W or more, equivalent thermal conductivities are the same regardless of heating orientation. It is thus considered that under that condition, working-fluid behaviors of the PHP become equivalent regardless of the heating orientation.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [21] An Experimental Investigation on Heat Transfer Performance of Nanofluid Pulsating Heat Pipe
    Jia, Hongwei
    Jia, Li
    Tan, Zetao
    JOURNAL OF THERMAL SCIENCE, 2013, 22 (05) : 484 - 490
  • [22] An experimental investigation on heat transfer performance of nanofluid pulsating heat pipe
    Hongwei Jia
    Li Jia
    Zetao Tan
    Journal of Thermal Science, 2013, 22 : 484 - 490
  • [23] Heat transfer performance of pulsating heat pipe with hygroscopic salt solution
    Zhang H.
    Weng J.
    Cui X.
    Huagong Xuebao, 2019, 3 (874-882): : 874 - 882
  • [24] Experimental study on heat transfer performance of pulsating heat pipe with refrigerants
    Xingyu Wang
    Li Jia
    Journal of Thermal Science, 2016, 25 : 449 - 453
  • [25] A study of the heat transfer performance of a pulsating heat pipe with ethanol-based mixtures
    Shi, Saiyan
    Cui, Xiaoyu
    Han, Hua
    Weng, Jianhua
    Li, Zhihua
    APPLIED THERMAL ENGINEERING, 2016, 102 : 1219 - 1227
  • [26] Heat transfer characteristics of a flat plate pulsating heat pipe with microstructures for unidirectional thermal-to-mechanical energy conversion
    Zhang, Qian
    Tan, Si-Cong
    Zhu, Jia-Min
    Jiang, Yu-Yan
    Guo, Cong
    APPLIED PHYSICS LETTERS, 2025, 126 (05)
  • [27] Development of a flat-plate cryogenic oscillating heat pipe for improving HTS magnet cooling
    Natsume, K.
    Mito, T.
    Yanagi, N.
    Tamura, H.
    PROCEEDINGS OF THE 25TH INTERNATIONAL SYMPOSIUM ON SUPERCONDUCTIVITY (ISS2012), 2013, 45 : 233 - 236
  • [28] Thermal performance characteristics of a pulsating heat pipe at various nonuniform heating conditions
    Jang, Dong Soo
    Chung, Hyun Joon
    Jeon, Yongseok
    Kim, Yongchan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 126 : 855 - 863
  • [29] Performance characteristics of flat-plate oscillating heat pipe with porous metal-foam wicks
    Qu, Jian
    Sun, Qin
    Wang, Hai
    Zhang, Donghui
    Yuan, Jianping
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 137 : 20 - 30
  • [30] Experimental investigation of the influence of surfactant on the heat transfer performance of pulsating heat pipe
    Wang, X. H.
    Zheng, H. C.
    Si, M. Q.
    Han, X. H.
    Chen, G. M.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 83 : 586 - 590