Optimized U-Net convolutional neural network based breast cancer prediction for accuracy increment in big data

被引:1
|
作者
Kirola, Madhu [1 ]
Memoria, Minakshi [1 ]
Dumka, Ankur [2 ,3 ]
机构
[1] Uttaranchal Univ, Uttaranchal Inst Technol, Dept Comp Sci & Engn, Dehra Dun, India
[2] Women Inst Technol, Dept Comp Sci & Engn, Dehra Dun, India
[3] Graph era Univ, Dept Comp Sci, Dehra Dun, Uttarakhand, India
关键词
big data; breast cancer; classification; deep learning; Hadoop; segmentation; MACHINE-LEARNING ALGORITHMS; RISK;
D O I
10.1002/cpe.7652
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Big data is data collected with huge dimensions and continuous exponential growth over time. In recent years, big data in health care has been commonly used to predict diseases. Breast cancer is one of the most common diseases and the secondary cause of death among women. Early diagnosis of breast cancer can prevent the risk of death. Few types of research have been done on breast cancer prediction on big data. However, the traditional prediction models have less efficient in terms of accuracy and error rate. The Optimized U-Net Convolutional neural network (OU-NetCNN) model is proposed in this paper to overcome these challenges. Hadoop is the storage system generated to store the datasets samples for big data. The data samples from two datasets, namely BreakHis and Kaggle (Breast Histopathology Images), are preserved in this storage system. The BreakHis data are considered for further processes like pre-processing, segmentation, feature extraction, feature selection, and classification from the stored data samples. The noise is removed from the histopathological breast images in pre-processing using the adaptive fast peer-group filtering (AFPGF) approach. Then the morphological operations such as erosion and dilation are used to eradicate unwanted portions and the quality of the image is enhanced using the improved balance contrast enhancement method (IBCE). Next, edges of breast images are detected using an adaptive artificial ecosystem optimization (AAEO) algorithm-based edge detection approach in the segmentation process. The features are extracted using the Spatial Gray Level Dependence Matrix (SGLDM) and the optimal features are selected by the modified selfish herd optimization (MSHO) algorithm. Finally, the selected features are fed into the proposed OU-NetCNN model to classify the histopathology images as benign and malignant images. This hybridization minimizes the error rate, computational complexity and over fitting issues. The simulation analysis is performed in the PYTHON tool. Two datasets, namely BreakHis and Kaggle (Breast Histopathology Images), are considered. Some of the measures such as precision, sensitivity, accuracy and F-measure are considered to evaluate the performance of the proposed model and compared with existing approaches.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Breast cancer mitotic cell detection using cascade convolutional neural network with U-Net
    Lu, Xi
    You, Zejun
    Sun, Miaomiao
    Wu, Jing
    Zhang, Zhihong
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 18 (01) : 673 - 695
  • [2] Development of U-net Neural Network for Biomedical Images with Big Data
    Zhang, Yameng
    Wan, Min
    Tian, Hua
    Liu, Yangyang
    Lv, Qian
    Li, Weitao
    BIG DATA AND SECURITY, ICBDS 2023, PT II, 2024, 2100 : 27 - 39
  • [3] Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network
    Byra, Michal
    Jarosik, Piotr
    Szubert, Aleksandra
    Galperin, Michael
    Ojeda-Fournier, Haydee
    Olson, Linda
    O'Boyle, Mary
    Comstock, Christopher
    Andre, Michael
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 61
  • [4] Extended and optimized deep convolutional neural network-based lung tumor identification in big data
    Ananth, Antony Dennis
    Palanisamy, Chenniappan
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (03) : 918 - 934
  • [5] Enhancing breast cancer segmentation and classification: An Ensemble Deep Convolutional Neural Network and U-net approach on ultrasound images
    Islam, Md Rakibul
    Rahman, Md Mahbubur
    Ali, Md Shahin
    Nafi, Abdullah Al Nomaan
    Alam, Md Shahariar
    Godder, Tapan Kumar
    Miah, Md Sipon
    Islam, Md Khairul
    MACHINE LEARNING WITH APPLICATIONS, 2024, 16
  • [6] Microaneurysms segmentation with a U-Net based on recurrent residual convolutional neural network
    Kou, Caixia
    Li, Wei
    Liang, Wei
    Yu, Zekuan
    Hao, Jianchen
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (02)
  • [7] BREAST LESION SEGMENTATION AND CLASSIFICATION USING U-NET SALIENCY ESTIMATION AND EXPLAINABLE RESIDUAL CONVOLUTIONAL NEURAL NETWORK
    Fatima, Mamuna
    Khan, Muhammad attique
    Shaheen, Saima
    Albarakati, Hussain mobarak
    Wang, Shuihua
    Jilani, Syeda fizzah
    Shabaz, Mohammad
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024,
  • [8] Skin cancer diagnosis based on optimized convolutional neural network
    Zhang, Ni
    Cai, Yi-Xin
    Wang, Yong-Yong
    Tian, Yi-Tao
    Wang, Xiao-Li
    Badami, Benjamin
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 102 (102)
  • [9] Segmentation of Breast Masses in Digital Mammography Based on U-Net Deep Convolutional Neural Networks
    A. N. Ruchay
    V. I. Kober
    K. A. Dorofeev
    V. N. Karnaukhov
    M. G. Mozerov
    Journal of Communications Technology and Electronics, 2022, 67 : 1531 - 1541
  • [10] Segmentation of Breast Masses in Digital Mammography Based on U-Net Deep Convolutional Neural Networks
    Ruchay, A. N.
    Kober, V. I.
    Dorofeev, K. A.
    Karnaukhov, V. N.
    Mozerov, M. G.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2022, 67 (12) : 1531 - 1541