Efficient removal of uranium(VI) from aqueous solution by a novel phosphate-modified biochar supporting zero-valent iron composite

被引:14
|
作者
Tang, Ziwei [1 ,2 ,3 ]
Dai, Zhongran [4 ]
Gong, Mi [1 ,2 ,3 ]
Chen, Hong [1 ,2 ,3 ]
Zhou, Xiayu [1 ,2 ,3 ]
Wang, Yating [1 ,2 ,3 ]
Jiang, Cong [1 ,2 ,3 ]
Yu, Wanying [1 ,2 ,3 ]
Li, Le [1 ,2 ,3 ,4 ]
机构
[1] Univ South China, Coll Publ Hlth, Hengyang Med Sch, Hengyang 421001, Hunan, Peoples R China
[2] Univ South China, Hengyang Key Lab Comprehens Prevent & Control Uran, Hengyang 421001, Hunan, Peoples R China
[3] Univ South China, Hunan Prov Key Lab Typ Environm Pollut & Hlth Haza, Hengyang 421001, Hunan, Peoples R China
[4] Univ South China, Hunan Prov Key Lab Green Dev Technol Extremely Low, Hengyang 421001, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Uranium; Biochar; nZVI; Adsorption; Reduction; ADSORPTION;
D O I
10.1007/s11356-022-25124-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Uranium (U) is an important strategic resource as well as a heavy metal element with both chemical and radiotoxicity. At present, the rapid and efficient removal of uranium from wastewater remains a huge challenge for environmental protection and ecological security. In this paper, phosphate-modified biochar supporting nano zero-valent iron (PBC/nZVI) was triumphantly prepared and fully characterized. The introduction of polyphosphate can greatly increase the specific surface area of biochar pores, and then the zero-valent iron can be evenly distributed on the surface of material, thus leading to excellent removal performance of the PBC/nZVI for U(VI). The theoretical maximum U(VI) removal capacity of PBC/nZVI was up to 967.53 mg/g at pH 5. The results of adsorption kinetics, isotherm, and thermodynamics showed that the adsorption of uranium by PBC/nZVI was a monolayer physical adsorption and endothermic reaction. And the PBC/nZVI has favorable selectivity toward uranium against the interference of coexisting metal ions. Further mechanism studies show that the excellent uranium removal performance of PBC/nZVI is mainly attributed to the synergistic effect of physical adsorption and chemical reduction. This work proves that the PBC/nZVI has a wide application prospect in the field of uranium wastewater treatment.
引用
收藏
页码:40478 / 40489
页数:12
相关论文
共 50 条
  • [1] Efficient removal of uranium(VI) from aqueous solution by a novel phosphate-modified biochar supporting zero-valent iron composite
    Ziwei Tang
    Zhongran Dai
    Mi Gong
    Hong Chen
    Xiayu Zhou
    Yating Wang
    Cong Jiang
    Wanying Yu
    Le Li
    Environmental Science and Pollution Research, 2023, 30 : 40478 - 40489
  • [2] Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution
    Dong, Haoran
    Deng, Junmin
    Xie, Yankai
    Zhang, Cong
    Jiang, Zhao
    Cheng, Yujun
    Hou, Kunjie
    Zeng, Guangming
    JOURNAL OF HAZARDOUS MATERIALS, 2017, 332 : 79 - 86
  • [3] Removal of trichloroethylene by biochar supported nanoscale zero-valent iron in aqueous solution
    Dong, Haoran
    Zhang, Cong
    Hou, Kunjie
    Cheng, Yujun
    Deng, Junmin
    Jiang, Zhao
    Tang, Lin
    Zeng, Guangming
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 188 : 188 - 196
  • [4] Efficient removal of uranium (VI) from aqueous solution by thiol-functionalized montmorillonite/nanoscale zero-valent iron composite
    Acheampong, Edward Opong
    Wang, Ke
    Lv, Rui
    Lin, Sen
    Sun, Shiyong
    Golubev, Yevgeny Aleksandrovich
    Kotova, Elena Leonidovna
    Kotova, Olga Borisovna
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2023, 332 (06) : 1989 - 2002
  • [5] Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite
    Li, Zi-Jie
    Wang, Lin
    Yuan, Li-Yong
    Xiao, Cheng-Liang
    Mei, Lei
    Zheng, Li-Rong
    Zhang, Jing
    Yang, Ju-Hua
    Zhao, Yu-Liang
    Zhu, Zhen-Tai
    Chai, Zhi-Fang
    Shi, Wei-Qun
    JOURNAL OF HAZARDOUS MATERIALS, 2015, 290 : 26 - 33
  • [6] Magnetic triiron tetraoxide/biochar-loaded nanoscale zero-valent iron for chromium(VI) removal from aqueous solution
    Yang, Xinyu
    Li, Xiumin
    Wang, Xuejiao
    Mu, Yan
    Tian, Weiliang
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2024, 159
  • [7] Investigation of a modified metal-organic framework UiO-66 with nanoscale zero-valent iron for removal of uranium (VI) from aqueous solution
    Yang, Fan
    Xie, Shuibo
    Wang, Guohua
    Yu, Chuck Wah
    Liu, Haiyan
    Liu, Yingjiu
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (16) : 20246 - 20258
  • [8] Mechanism of phosphate removal from aqueous solutions by biochar supported nanoscale zero-valent iron
    Ma, Fengfeng
    Zhao, Baowei
    Diao, Jingru
    Jiang, Yufeng
    Zhang, Jian
    RSC ADVANCES, 2020, 10 (64) : 39217 - 39225
  • [9] Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene
    Wei, Gaoling
    Zhang, Jinhua
    Luo, Jinqiu
    Xue, Huajian
    Huang, Deyin
    Cheng, Zhiyang
    Jiang, Xinbai
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2019, 13 (04)
  • [10] Active biochar support nano zero-valent iron for efficient removal of U(VI) from sewage water
    Zhang, Qi
    Wang, Yangyang
    Wang, Zheng
    Zhang, Zhijie
    Wang, Xiaodong
    Yang, Zhenglong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 852 (852)