A general class of promotion time cure rate models with a new biological interpretation

被引:4
作者
Gomez, Yolanda M. [1 ]
Gallardo, Diego, I [1 ,2 ]
Bourguignon, Marcelo [3 ]
Bertolli, Eduardo [4 ,5 ]
Calsavara, Vinicius F. [6 ]
机构
[1] Univ Atacama, Fac Med, Dept Med, Copiapo, Chile
[2] Univ Atacama, Fac Ingn, Dept Matemat, Copiapo, Chile
[3] Univ Fed Rio Grande do Norte, Dept Estat, BR-59078970 Natal, RN, Brazil
[4] AC Camargo Canc Ctr, Skin Canc Dept, Sao Paulo, SP, Brazil
[5] Beneficencia Ponuguesa, Oncol Ctr, Sao Paulo, SP, Brazil
[6] Cedars Sinai Med Ctr, Biostat & Bioinformat Res Ctr, Los Angeles, CA 90048 USA
关键词
Compound Poisson distributions; Concurrent causes; Cure rate models; Promotion time cure model; Weibull distribution; CHANGING EXPOSURE; SURVIVAL MODELS; IDENTIFIABILITY;
D O I
10.1007/s10985-022-09575-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Over the last decades, the challenges in survival models have been changing considerably and full probabilistic modeling is crucial in many medical applications. Motivated from a new biological interpretation of cancer metastasis, we introduce a general method for obtaining more flexible cure rate models. The proposal model extended the promotion time cure rate model. Furthermore, it includes several well-known models as special cases and defines many new special models. We derive several properties of the hazard function for the proposed model and establish mathematical relationships with the promotion time cure rate model. We consider a frequentist approach to perform inferences, and the maximum likelihood method is employed to estimate the model parameters. Simulation studies are conducted to evaluate its performance with a discussion of the obtained results. A real dataset from population-based study of incident cases of melanoma diagnosed in the state of Sao Paulo, Brazil, is discussed in detail.
引用
收藏
页码:66 / 86
页数:21
相关论文
共 34 条
[1]  
[Anonymous], 2017, INST NACL CANC JAG D
[2]  
[Anonymous], 1996, J COMPUT GRAPH STAT, DOI [10.2307/1390802, DOI 10.1080/10618600.1996.10474708]
[3]   High BRAF variant allele frequencies are associated with distinct pathological features and responsiveness to target therapy in melanoma patients [J].
Berrino, E. ;
Balsamo, A. ;
Pisacane, A. ;
Gallo, S. ;
Becco, P. ;
Miglio, U. ;
Caravelli, D. ;
Poletto, S. ;
Paruzzo, L. ;
Debernardi, C. ;
Piccinelli, C. ;
Zaccagna, A. ;
Rescigno, P. ;
Aglietta, M. ;
Sapino, A. ;
Carnevale-Schianca, F. ;
Venesio, T. .
ESMO OPEN, 2021, 6 (03)
[4]   Long-term frailty modeling using a non-proportional hazards model: Application with a melanoma dataset [J].
Calsavara, Vinicius F. ;
Milani, Eder A. ;
Bertolli, Eduardo ;
Tomazella, Vera .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (08) :2100-2118
[5]   A new Bayesian model for survival data with a surviving fraction [J].
Chen, MH ;
Ibrahim, JG ;
Sinha, D .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (447) :909-919
[6]   Promotion time cure rate model with nonparametric form of covariate effects [J].
Chen, Tianlei ;
Du, Pang .
STATISTICS IN MEDICINE, 2018, 37 (10) :1625-1635
[7]   Flexible cure rate modeling under latent activation schemes [J].
Cooner, Freda ;
Banerjee, Sudipto ;
Carlin, Bradley P. ;
Sinha, Debajyoti .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (478) :560-572
[8]   The importance of a database in the management of healthcare services [J].
de Andrade, Claudia Toledo ;
Castello Branco Magedanz, Ana Maria Prado ;
Escobosa, Daisa Mesquita ;
Tomaz, Wellington Martins ;
Santinho, Carolina Sampieri ;
Lopes, Tania Oliveira ;
Lombardo, Valeria .
EINSTEIN-SAO PAULO, 2012, 10 (03) :360-365
[9]   A Bayesian Long-term Survival Model Parametrized in the Cured Fraction [J].
de Castro, Mario ;
Cancho, Vicente G. ;
Rodrigues, Josemar .
BIOMETRICAL JOURNAL, 2009, 51 (03) :443-455
[10]  
Ervik M., 2016, Cancer Today