Temporal-Spatial Quantum Graph Convolutional Neural Network Based on Schrodinger Approach for Traffic Congestion Prediction

被引:90
|
作者
Qu, Zhiguo [1 ,2 ,3 ]
Liu, Xinzhu [4 ]
Zheng, Min [5 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Equipment Technol & Engn Res Ctr Digital Forens, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Minist Educ, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Comp & Sci, Nanjing 210044, Peoples R China
[3] Beijing Univ Posts & Telecommun, Informat Secur Ctr, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[5] Hubei Univ Sci & Technol, Sch Econ & Management, Xianning 437099, Peoples R China
基金
中国国家自然科学基金;
关键词
Neural networks; Computational modeling; Roads; Convolutional neural networks; Closed-form solutions; Machine learning; Data models; Intelligent transportation system; traffic congestion prediction; Schrodinger approach; quantum graph convolutional neural network;
D O I
10.1109/TITS.2022.3203791
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic congestion prediction (TCP) plays a vital role in intelligent transportation systems due to its importance of traffic management. Methods for TCP have emerged greatly with the development of machine learning. However, TCP is always a challenging work due to the dynamic characteristics of traffic data and the complex structure of traffic network. This paper presents a new quantum algorithm that can capture temporal and spatial features of traffic data simultaneously for TCP. The algorithm consists of the following steps. First, we give a closed-form solution in the Schrodinger approach theoretically to analyze this TCP problem in time dimension. Then we can get the temporal features from the solution. At last, we construct a quantum graph convolutional network and apply temporal features into it. Thus, the temporal-spatial quantum graph convolutional neural network is proposed. The feasibility of this method is proved through experiments on the simulation platform. The experimental results show the average error rate is 0.21 and can resist perturbation effectively.
引用
收藏
页码:8677 / 8686
页数:10
相关论文
共 50 条
  • [31] Sequential Graph Neural Network for Urban Road Traffic Speed Prediction
    Xie, Zhipu
    Lv, Weifeng
    Huang, Shangfo
    Lu, Zhilong
    Du, Bowen
    Huang, Runhe
    IEEE ACCESS, 2020, 8 : 63349 - 63358
  • [32] Short-Term Traffic Flow Prediction Based on Graph Convolutional Networks and Federated Learning
    Xia, Mengran
    Jin, Dawei
    Chen, Jingyu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (01) : 1191 - 1203
  • [33] A Spatial-Temporal Gated Hypergraph Convolution Network for Traffic Prediction
    Cao, Shuqin
    Wu, Libing
    Zhang, Rui
    Chen, Yanjiao
    Li, Jianxin
    Liu, Qin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (07) : 9546 - 9559
  • [34] ADGCN: An Asynchronous Dilation Graph Convolutional Network for Traffic Flow Prediction
    Qi, Tao
    Li, Guanghui
    Chen, Lingqiang
    Xue, Yanming
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (05) : 4001 - 4014
  • [35] KST-GCN: A Knowledge-Driven Spatial-Temporal Graph Convolutional Network for Traffic Forecasting
    Zhu, Jiawei
    Han, Xing
    Deng, Hanhan
    Tao, Chao
    Zhao, Ling
    Wang, Pu
    Lin, Tao
    Li, Haifeng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 15055 - 15065
  • [36] A Hybrid Prediction Method for Realistic Network Traffic With Temporal Convolutional Network and LSTM
    Bi, Jing
    Zhang, Xiang
    Yuan, Haitao
    Zhang, Jia
    Zhou, MengChu
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (03) : 1869 - 1879
  • [37] A Spatial-Temporal Attention Approach for Traffic Prediction
    Shi, Xiaoming
    Qi, Heng
    Shen, Yanming
    Wu, Genze
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (08) : 4909 - 4918
  • [38] A Learning Convolutional Neural Network Approach for Network Robustness Prediction
    Lou, Yang
    Wu, Ruizi
    Li, Junli
    Wang, Lin
    Li, Xiang
    Chen, Guanrong
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (07) : 4531 - 4544
  • [39] Global-Local Temporal Convolutional Network for Traffic Flow Prediction
    Ren, Yajie
    Zhao, Dong
    Luo, Dan
    Ma, Huadong
    Duan, Pengrui
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (02) : 1578 - 1584
  • [40] Attention-based spatial-temporal adaptive dual-graph convolutional network for traffic flow forecasting
    Xia, Dawen
    Shen, Bingqi
    Geng, Jian
    Hu, Yang
    Li, Yantao
    Li, Huaqing
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (23) : 17217 - 17231