Temporal-Spatial Quantum Graph Convolutional Neural Network Based on Schrodinger Approach for Traffic Congestion Prediction

被引:90
|
作者
Qu, Zhiguo [1 ,2 ,3 ]
Liu, Xinzhu [4 ]
Zheng, Min [5 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Equipment Technol & Engn Res Ctr Digital Forens, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Minist Educ, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Comp & Sci, Nanjing 210044, Peoples R China
[3] Beijing Univ Posts & Telecommun, Informat Secur Ctr, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[5] Hubei Univ Sci & Technol, Sch Econ & Management, Xianning 437099, Peoples R China
基金
中国国家自然科学基金;
关键词
Neural networks; Computational modeling; Roads; Convolutional neural networks; Closed-form solutions; Machine learning; Data models; Intelligent transportation system; traffic congestion prediction; Schrodinger approach; quantum graph convolutional neural network;
D O I
10.1109/TITS.2022.3203791
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic congestion prediction (TCP) plays a vital role in intelligent transportation systems due to its importance of traffic management. Methods for TCP have emerged greatly with the development of machine learning. However, TCP is always a challenging work due to the dynamic characteristics of traffic data and the complex structure of traffic network. This paper presents a new quantum algorithm that can capture temporal and spatial features of traffic data simultaneously for TCP. The algorithm consists of the following steps. First, we give a closed-form solution in the Schrodinger approach theoretically to analyze this TCP problem in time dimension. Then we can get the temporal features from the solution. At last, we construct a quantum graph convolutional network and apply temporal features into it. Thus, the temporal-spatial quantum graph convolutional neural network is proposed. The feasibility of this method is proved through experiments on the simulation platform. The experimental results show the average error rate is 0.21 and can resist perturbation effectively.
引用
收藏
页码:8677 / 8686
页数:10
相关论文
共 50 条
  • [1] Spatial-Temporal Dynamic Graph Convolutional Neural Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    IEEE ACCESS, 2023, 11 : 97920 - 97929
  • [2] Transfer Learning With Spatial-Temporal Graph Convolutional Network for Traffic Prediction
    Yao, Zhixiu
    Xia, Shichao
    Li, Yun
    Wu, Guangfu
    Zuo, Linli
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8592 - 8605
  • [3] Hierarchical Traffic Flow Prediction Based on Spatial-Temporal Graph Convolutional Network
    Wang, Hanqiu
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 16137 - 16147
  • [4] T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction
    Zhao, Ling
    Song, Yujiao
    Zhang, Chao
    Liu, Yu
    Wang, Pu
    Lin, Tao
    Deng, Min
    Li, Haifeng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (09) : 3848 - 3858
  • [5] An Optimized Temporal-Spatial Gated Graph Convolution Network for Traffic Forecasting
    Guo, Kan
    Hu, Yongli
    Sun, Yanfeng
    Qian, Zhen
    Gao, Junbin
    Yin, Baocai
    IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2022, 14 (01) : 153 - 162
  • [6] Spatial-Temporal Traffic Prediction With an Interactive Spatial-Enhanced Graph Convolutional Network Model
    Li, Qin
    Xu, Pai
    Yang, Xuan
    Wu, Yuankai
    He, Hongwen
    He, Deqiang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, : 20767 - 20778
  • [7] GraphSAGE-Based Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction
    Liu, Tao
    Jiang, Aimin
    Zhou, Jia
    Li, Min
    Kwan, Hon Keung
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (10) : 11210 - 11224
  • [8] DSTGCN: Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction
    Hu, Jia
    Lin, Xianghong
    Wang, Chu
    IEEE SENSORS JOURNAL, 2022, 22 (13) : 13116 - 13124
  • [9] Prediction of Traffic Congestion Based on LSTM Through Correction of Missing Temporal and Spatial Data
    Shin, Dong-Hoon
    Chung, Kyungyong
    Park, Roy C.
    IEEE ACCESS, 2020, 8 (08): : 150784 - 150796
  • [10] Traffic Speed Prediction Based on Time Classification in Combination With Spatial Graph Convolutional Network
    Pan, Xiuqin
    Hou, Fei
    Li, Sumin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8799 - 8808