Global existence of weak solutions to the drift-flux system for general pressure laws

被引:6
作者
Li, Hailiang [1 ,2 ]
Shou, Lingyun [1 ,2 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Capital Normal Univ, Acad Multidisciplinary Studies, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
two-phase flow; drift-flux model; global weak solutions; non-monotone pressure laws; quantitative regularity estimate; NAVIER-STOKES EQUATIONS; 2-PHASE FLOW; WELL-POSEDNESS; MODEL; CONVERGENCE; BEHAVIOR;
D O I
10.1007/s11425-021-1927-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The initial value problem of the multi-dimensional drift-flux model for two-phase flow is investigated in this paper, and the global existence of weak solutions with finite energy is established for general pressure-density functions without the monotonicity assumption.
引用
收藏
页码:251 / 284
页数:34
相关论文
共 59 条
[11]   Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor [J].
Bresch, Didier ;
Jabin, Pierre-emmanuel .
ANNALS OF MATHEMATICS, 2018, 188 (02) :577-684
[12]   Global Weak Solutions to One-Dimensional Non-Conservative Viscous Compressible Two-Phase System [J].
Bresch, Didier ;
Huang, Xiangdi ;
Li, Jing .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (03) :737-755
[13]  
Brezis H, 2011, UNIVERSITEXT, P349, DOI 10.1007/978-0-387-70914-7_11
[14]   COMMUTATORS OF SINGULAR INTEGRALS AND BILINEAR SINGULAR INTEGRALS [J].
COIFMAN, RR ;
MEYER, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 212 (OCT) :315-331
[15]   FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES [J].
COIFMAN, RR ;
ROCHBERG, R ;
WEISS, G .
ANNALS OF MATHEMATICS, 1976, 103 (03) :611-635
[16]   Some aspects of the modeling at different scales of multiphase flows [J].
Desvillettes, Laurent .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (21-22) :1265-1267
[17]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[18]   Global existence of weak solutions for a viscous two-phase model [J].
Evje, Steinar ;
Karlsen, Kenneth H. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (09) :2660-2703
[19]   On global solutions to the viscous liquid-gas model with unconstrained transition to single-phase flow [J].
Evje, Steinar ;
Wen, Huanyao ;
Zhu, Changjiang .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (02) :323-346
[20]   Global Well-Posedness and Decay Rates of Strong Solutions to a Non-Conservative Compressible Two-Fluid Model [J].
Evje, Steinar ;
Wang, Wenjun ;
Wen, Huanyao .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 221 (03) :1285-1316