Global existence of weak solutions to the drift-flux system for general pressure laws

被引:6
作者
Li, Hailiang [1 ,2 ]
Shou, Lingyun [1 ,2 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Capital Normal Univ, Acad Multidisciplinary Studies, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
two-phase flow; drift-flux model; global weak solutions; non-monotone pressure laws; quantitative regularity estimate; NAVIER-STOKES EQUATIONS; 2-PHASE FLOW; WELL-POSEDNESS; MODEL; CONVERGENCE; BEHAVIOR;
D O I
10.1007/s11425-021-1927-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The initial value problem of the multi-dimensional drift-flux model for two-phase flow is investigated in this paper, and the global existence of weak solutions with finite energy is established for general pressure-density functions without the monotonicity assumption.
引用
收藏
页码:251 / 284
页数:34
相关论文
共 59 条
[1]   EXISTENCE OF LARGE-DATA FINITE-ENERGY GLOBAL WEAK SOLUTIONS TO A COMPRESSIBLE OLDROYD-B MODEL [J].
Barrett, John W. ;
Lu, Yong ;
Suli, Endre .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (05) :1265-1323
[2]   Compactness for nonlinear continuity equations [J].
Ben Belgacem, Fethi ;
Jabin, Pierre-Emmanuel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (01) :139-168
[3]  
Brennen C.E., 2005, Fundamentals of Multiphase Flow
[4]   Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model [J].
Bresch, D ;
Desjardins, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (1-2) :211-223
[5]   On some compressible fluid models: Korteweg, lubrication, and shallow water systems [J].
Bresch, D ;
Desjardins, B ;
Lin, CK .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) :843-868
[6]   Global Weak Solutions to a Generic Two-Fluid Model [J].
Bresch, D. ;
Desjardins, B. ;
Ghidaglia, J. -M. ;
Grenier, E. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (02) :599-629
[7]  
Bresch D., 2017, HDB MATH ANAL MECH V, P1
[8]  
Bresch D., 2019, ARXIV190502701
[9]   On compressible Navier-Stokes equations with density dependent viscosities in bounded domains [J].
Bresch, Didier ;
Desjardins, Benoit ;
Gerard-Varet, David .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (02) :227-235
[10]   Finite-Energy Solutions for Compressible Two-Fluid Stokes System [J].
Bresch, Didier ;
Mucha, Piotr B. ;
Zatorska, Ewelina .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (02) :987-1029