The Implementation of a Machine-Learning-Based Model Utilizing Meta-heuristic Algorithms for Predicting Pile Bearing Capacity

被引:4
作者
Cai, Liang [1 ]
Zhu, Delong [1 ]
Xu, Kang [1 ]
机构
[1] Hubei Univ Automot Technol, Sch Econ & Management, Shiyan 442002, Hubei, Peoples R China
关键词
Pile bearing capacity; Gaussian process regression; Honey badger algorithm; Improved grey wolf optimizer; HIGH-PERFORMANCE CONCRETE; COMPRESSIVE STRENGTH; AXIAL CAPACITY; DRIVEN PILES; OPTIMIZATION; ANFIS;
D O I
10.1007/s40098-024-00933-6
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The main focus in designing pile foundations is the pile bearing capacity (PBC), influenced by various soil characteristics and foundation parameters. Piles play a crucial role in transferring structural loads to the ground. Accurate prediction of PBC is essential in geotechnical structure design. While, artificial neural networks have been used for this purpose, they have limitations, such as difficulties in finding global minima and slow convergence. Machine learning methods, promising for creating new models and algorithms, are favored over empirical approaches. This study utilizes Gaussian process regression (GPR) and employs meta heuristic optimizations, the Honey Badger algorithm, and the improved gray wolf optimizer (IGWO), for optimal results. A dataset of 231 samples from prior studies was compiled for a PBC predictive model employing soft computing techniques. Variables, including friction angle, cohesion, pile-soil friction angle, flap number, pile length, soil-specific weight, and pile area, were carefully chosen for comprehensive modeling. The GPIG model, amalgamating the GPR model with IGWO, emerged as the optimal predictor for PBC values based on the results. Notable R2 and RMSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{RMSE}}$$\end{document} values manifested this superiority during both the training and testing phases. Specifically, in the training phase, the GPIG model demonstrated exceptional performance with R2 and RMSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{RMSE}}$$\end{document} values of 0.996\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.996$$\end{document} and 118.7 KN, respectively. In the testing phase, the model continued to exhibit robust predictive capabilities, with R2 and RMSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{RMSE}}$$\end{document} values of 0.981\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.981$$\end{document} and 276.1 KN, respectively.
引用
收藏
页码:210 / 225
页数:16
相关论文
共 64 条
[1]   Predicting axial capacity of driven piles in cohesive soils using intelligent computing [J].
Alkroosh, Iyad ;
Nikraz, Hamid .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2012, 25 (03) :618-627
[2]   Prediction of Pile Bearing Capacity Using XGBoost Algorithm: Modeling and Performance Evaluation [J].
Amjad, Maaz ;
Ahmad, Irshad ;
Ahmad, Mahmood ;
Wroblewski, Piotr ;
Kaminski, Pawel ;
Amjad, Uzair .
APPLIED SCIENCES-BASEL, 2022, 12 (04)
[3]   Settlement prediction of the rock-socketed piles through a new technique based on gene expression programming [J].
Armaghani, Danial Jahed ;
Faradonbeh, Roohollah Shirani ;
Rezaei, Hossein ;
Rashid, Ahmad Safuan A. ;
Amnieh, Hassan Bakhshandeh .
NEURAL COMPUTING & APPLICATIONS, 2018, 29 (11) :1115-1125
[4]   Developing a hybrid PSO-ANN model for estimating the ultimate bearing capacity of rock-socketed piles [J].
Armaghani, Danial Jahed ;
Shoib, Raja Shahrom Nizam Shah Bin Raja ;
Faizi, Koohyar ;
Rashid, Ahmad Safuan A. .
NEURAL COMPUTING & APPLICATIONS, 2017, 28 (02) :391-405
[5]   Krill herd algorithm-based neural network in structural seismic reliability evaluation [J].
Asteris, Panagiotis G. ;
Nozhati, Saeed ;
Nikoo, Mehdi ;
Cavaleri, Liborio ;
Nikoo, Mohammad .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2019, 26 (13) :1146-1153
[6]   Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength [J].
Behnood, Ali ;
Verian, Kho Pin ;
Gharehveran, Mahsa Modiri .
CONSTRUCTION AND BUILDING MATERIALS, 2015, 98 :519-529
[7]  
Botchkarev A., 2018, ARXIV
[8]   Neuro-genetic, neuro-imperialism and genetic programing models in predicting ultimate bearing capacity of pile [J].
Chen, Wusi ;
Sarir, Payam ;
Bui, Xuan-Nam ;
Nguyen, Hoang ;
Tahir, M. M. ;
Armaghani, Danial Jahed .
ENGINEERING WITH COMPUTERS, 2020, 36 (03) :1101-1115
[9]   PREDICTING PROJECT SUCCESS IN CONSTRUCTION USING AN EVOLUTIONARY GAUSSIAN PROCESS INFERENCE MODEL [J].
Cheng, Min-Yuan ;
Huang, Chin-Chi ;
Van Roy, Andreas Franskie .
JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 2013, 19 :S202-S211
[10]   A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks [J].
Chithra, S. ;
Kumar, S. R. R. Senthil ;
Chinnaraju, K. ;
Ashmita, F. Alfin .
CONSTRUCTION AND BUILDING MATERIALS, 2016, 114 :528-535