ERNet: Edge Regularization Network for Cerebral Vessel Segmentation in Digital Subtraction Angiography Images

被引:2
作者
Xu, Weijin [1 ]
Yang, Huihua [1 ]
Shi, Yinghuan [2 ]
Tan, Tao [3 ,4 ]
Liu, Wentao [1 ]
Pan, Xipeng [5 ]
Deng, Yiming [6 ]
Gao, Feng [6 ]
Su, Ruisheng [7 ]
机构
[1] Beijing Univ Posts & Telecommun, Coll Artificial Intelligence, Beijing 100876, Peoples R China
[2] Nanjing Univ, Dept Comp Sci & Technol, Nanjing 210008, Peoples R China
[3] Macao Polytech Univ, Fac Appl Sci, Macau 999078, Peoples R China
[4] Netherlands Canc Inst NKI, Dept Radiol, NL-1066 CX Amsterdam, Netherlands
[5] Guilin Univ Elect Technol, Sch Comp Sci & Informat Secur, Guilin 541004, Peoples R China
[6] Capital Med Univ, Beijing TianTan Hosp, Beijing 100070, Peoples R China
[7] Erasmus MC, Univ Med Ctr Rotterdam, Dept Radiol & Nucl Med, NL-3015 GD Rotterdam, Netherlands
基金
中国国家自然科学基金;
关键词
Image segmentation; Feature extraction; Image edge detection; Transformers; Arteries; Erosion; Convolution; Cerebral vessel segmentation; edge regularization; stroke; digital subtraction angiography; DSA IMAGES; ATTENTION; TRACKING;
D O I
10.1109/JBHI.2023.3342195
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stroke is a leading cause of disability and fatality in the world, with ischemic stroke being the most common type. Digital Subtraction Angiography images, the gold standard in the operation process, can accurately show the contours and blood flow of cerebral vessels. The segmentation of cerebral vessels in DSA images can effectively help physicians assess the lesions. However, due to the disturbances in imaging parameters and changes in imaging scale, accurate cerebral vessel segmentation in DSA images is still a challenging task. In this paper, we propose a novel Edge Regularization Network (ERNet) to segment cerebral vessels in DSA images. Specifically, ERNet employs the erosion and dilation processes on the original binary vessel annotation to generate pseudo-ground truths of False Negative and False Positive, which serve as constraints to refine the coarse predictions based on their mapping relationship with the original vessels. In addition, we exploit a Hybrid Fusion Module based on convolution and transformers to extract local features and build long-range dependencies. Moreover, to support and advance the open research in the field of ischemic stroke, we introduce FPDSA, the first pixel-level semantic segmentation dataset for cerebral vessels. Extensive experiments on FPDSA illustrate the leading performance of our ERNet.
引用
收藏
页码:1472 / 1483
页数:12
相关论文
共 53 条
[1]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[2]   A Randomized Trial of Intraarterial Treatment for Acute Ischemic Stroke [J].
Berkhemer, O. A. ;
Fransen, P. S. S. ;
Beumer, D. ;
van den Berg, L. A. ;
Lingsma, H. F. ;
Yoo, A. J. ;
Schonewille, W. J. ;
Vos, J. A. ;
Nederkoorn, P. J. ;
Wermer, M. J. H. ;
van Walderveen, M. A. A. ;
Staals, J. ;
Hofmeijer, J. ;
van Oostayen, J. A. ;
Nijeholt, G. J. Lycklama A. ;
Boiten, J. ;
Brouwer, P. A. ;
Emmer, B. J. ;
de Bruijn, S. F. ;
van Dijk, L. C. ;
Kappelle, L. J. ;
Lo, R. H. ;
Van Dijk, E. J. ;
de Vries, J. ;
de Kort, P. L. M. ;
van Rooij, W. J. J. ;
van den Berg, J. S. P. ;
van Hasselt, B. A. A. M. ;
Aerden, L. A. M. ;
Dallinga, R. J. ;
Visser, M. C. ;
Bot, J. C. J. ;
Vroomen, P. C. ;
Eshghi, O. ;
Schreuder, T. H. C. M. L. ;
Heijboer, R. J. J. ;
Keizer, K. ;
Tielbeek, A. V. ;
den Hertog, H. M. ;
Gerrits, D. G. ;
van den Berg-Vos, R. M. ;
Karas, G. B. ;
Steyerberg, E. W. ;
Flach, H. Z. ;
Marquering, H. A. ;
Sprengers, M. E. S. ;
Jenniskens, S. F. M. ;
Beenen, L. F. M. ;
van den Berg, R. ;
Koudstaal, P. J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (01) :11-20
[3]  
Lipton ZC, 2015, Arxiv, DOI arXiv:1506.00019
[4]   A Higher-Order Tensor Vessel Tractography for Segmentation of Vascular Structures [J].
Cetin, Suheyla ;
Unal, Gozde .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) :2172-2185
[5]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[6]   Boundary IoU: Improving Object-Centric Image Segmentation Evaluation [J].
Cheng, Bowen ;
Girshick, Ross ;
Dollar, Piotr ;
Berg, Alexander C. ;
Kirillov, Alexander .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :15329-15337
[7]  
Cheng M., 2021, ICCV, P7147
[8]   A Function for Quality Evaluation of Retinal Vessel Segmentations [J].
Emilio Gegundez-Arias, Manuel ;
Aquino, Arturo ;
Manuel Bravo, Jose ;
Marin, Diego .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (02) :231-239
[9]  
Feng ZL, 2021, AAAI CONF ARTIF INTE, V35, P1325
[10]   Multiple hypothesis template tracking of small 3D vessel structures [J].
Friman, Ola ;
Hindennach, Milo ;
Kuehnel, Caroline ;
Peitgen, Heinz-Otto .
MEDICAL IMAGE ANALYSIS, 2010, 14 (02) :160-171