Mitigation of earthquake-induced liquefaction and lateral spread deformation by applying ground granulated blast furnace slag

被引:2
|
作者
Zhang, Xiaoyu [1 ]
Wang, Shengkun [1 ]
Su, Lei [2 ]
Zhu, Haibo [1 ]
Liu, Hai [1 ]
Liu, Chao [1 ]
Cui, Jie [1 ]
机构
[1] Guangzhou Univ, Sch Civil Engn, Guangzhou 510006, Peoples R China
[2] Qingdao Univ Technol, Sch Civil Engn, Qingdao 266033, Peoples R China
基金
中国国家自然科学基金;
关键词
Ground granulated blast furnace slag; Soil improvement; Liquefaction mitigation; Cyclic triaxial test; Numerical simulation; CYCLIC MOBILITY; SAND; RESISTANCE; BENTONITE; VELOCITY; SOILS; PILE;
D O I
10.1016/j.soildyn.2024.108493
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
In recent years, the rapid growth of steel production has accelerated the generation of ground granulated blast furnace slag (GGBFS). To reduce the environmental problems caused by the excessive accumulation of GGBFS, this study examined the potential of using GGBFS for soil improvement to mitigate earthquake-induced soil liquefaction. Twenty-nine stress-controlled undrained cyclic triaxial tests were conducted on saturated sands reinforced with and without GGBFS. The influence of the GGBFS content, cyclic stress ratio, and effective confining pressure on the liquefaction behavior of improved and unimproved sands was investigated. The experimental results showed that as the GGBFS content increased, the rate of improvement in liquefaction resistance increased, and the largest liquefaction resistance improvement rate of the sample with 17.5 % GGBFS content reached 1060 %. Besides, the reinforcement effect of GGBFS applied to mildly sloping liquefiable ground was also studied by numerical modeling method. The numerical simulation results further indicated that the liquefaction-induced lateral spread deformations can indeed be reduced due to the presence of GGBFS.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Effect of ground granulated blast furnace slag (GGBFS) on RCCP durability
    Aghaeipour, Arash
    Madhkhan, Morteza
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 141 : 533 - 541
  • [2] Strength development of solely ground granulated blast furnace slag geopolymers
    Aziz, Ikmal Hakem
    Abdullah, Mohd Mustafa Al Bakri
    Salleh, M. A. A. Mohd
    Azimi, Emy Aizat
    Chaiprapa, Jitrin
    Sandu, Andrei Victor
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 250
  • [3] Properties of High Content Ground Granulated Blast Furnace Slag Concrete
    Topcu, Ilker Bekir
    Unverdi, Aytac
    PROCEEDINGS OF 3RD INTERNATIONAL SUSTAINABLE BUILDINGS SYMPOSIUM (ISBS 2017), VOL 1, 2018, 6 : 114 - 126
  • [4] Reactivation of a Retarded Suspension of Ground Granulated Blast-Furnace Slag
    Schneider, Nick
    Stephan, Dietmar
    MATERIALS, 2016, 9 (03)
  • [5] Properties of alkali-activated ground granulated blast furnace slag blended with ferronickel slag
    Cao, Ruilin
    Li, Baoliang
    You, Nanqiao
    Zhang, Yamei
    Zhang, Zuhua
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 192 : 123 - 132
  • [6] The Abrasion and Strength Properties of Mortars Containing Ground Granulated Blast Furnace Slag
    Bilim, Cahit
    Atis, Cengiz Duran
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2011, 14 (02): : 101 - 107
  • [7] Microstructural evolution and characterization of ground granulated blast furnace slag in variant pH
    Sun, Guowen
    Zhang, Jianjian
    Yan, Na
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 251
  • [8] Effect of coral powder and ground-granulated blast-furnace slag on the hydration behavior of cement paste
    Nie, Renwang
    Wu, Qingyong
    Yu, Zhuqing
    Wang, Aiguo
    Shen, Xiaodong
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (12) : 6643 - 6654
  • [9] Modeling the Influence of Ground-Granulated Blast Furnace Slag on Hydration of Cement
    Yadeta, Andualem
    Goyal, Pradeep
    Sarkar, Raju
    ADVANCES IN CIVIL ENGINEERING, 2023, 2023
  • [10] The Effect of Fineness on the Hydration Activity Index of Ground Granulated Blast Furnace Slag
    Dai, Jinpeng
    Wang, Qicai
    Xie, Chao
    Xue, Yanjin
    Duan, Yun
    Cui, Xiaoning
    MATERIALS, 2019, 12 (18)