IMPROVED SELF-CONSISTENT FIELD ITERATION FOR KOHN--SHAM DENSITY FUNCTIONAL THEORY

被引:1
作者
Xu, Fei [1 ]
Huang, Qiumei [1 ]
机构
[1] Beijing Univ Technol, Fac Sci, Beijing Inst Sci & Engn Comp, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
acceleration; self-consistent field iteration; Kohn--Sham density functional theory; CONVERGENCE;
D O I
10.1137/23M1558215
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, an improved self -consistent field iteration scheme is introduced. The proposed method has essential applications in Kohn --Sham density functional theory and relies on an extrapolation scheme and the least squares method. Moreover, the proposed solution is easy to implement and can accelerate the convergence of self -consistent field iteration. The main idea is to fit out a polynomial based on the errors of the derived approximate solutions and then extrapolate the errors into zero to obtain a new approximation. The developed scheme can be applied not only to the Kohn --Sham density functional theory but also to accelerate the self -consistent field iterations of other nonlinear equations. Some numerical results for the Kohn --Sham equation and general nonlinear equations are presented to validate the efficiency of the new method.
引用
收藏
页码:142 / 154
页数:13
相关论文
共 50 条
[21]   Kohn-Sham Theory with Paramagnetic Currents: Compatibility and Functional Differentiability [J].
Laestadius, Andre ;
Tellgren, Erik I. ;
Penz, Markus ;
Ruggenthaler, Michael ;
Kvaal, Simen ;
Helgaker, Trygve .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (07) :4003-4020
[22]   A posteriori error estimation for the non-self-consistent Kohn-Sham equations [J].
Herbst, Michael F. ;
Levitt, Antoine ;
Cances, Eric .
FARADAY DISCUSSIONS, 2020, 224 (00) :227-246
[23]   Direct minimization on the complex Stiefel manifold in Kohn-Sham density functional theory for finite and extended systems [J].
Luo, Kai ;
Wang, Tingguang ;
Ren, Xinguo .
COMPUTER PHYSICS COMMUNICATIONS, 2025, 312
[24]   A POSTERIORI ERROR ESTIMATOR FOR ADAPTIVE LOCAL BASIS FUNCTIONS TO SOLVE KOHN-SHAM DENSITY FUNCTIONAL THEORY [J].
Kaye, Jason ;
Lin, Lin ;
Yang, Chao .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (07) :1741-1773
[25]   Higher-order adaptive finite-element methods for Kohn-Sham density functional theory [J].
Motamarri, P. ;
Nowak, M. R. ;
Leiter, K. ;
Knap, J. ;
Gavini, V. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 253 :308-343
[26]   Hybrid finite element/multipole expansion method for atomic Kohn-Sham density functional theory calculations [J].
Yalcin, M. A. ;
Temizer, I. .
COMPUTER PHYSICS COMMUNICATIONS, 2023, 286
[27]   Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation [J].
Lin, Lin ;
Lu, Jianfeng ;
Ying, Lexing ;
E, Weinan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) :2140-2154
[28]   Broadly Accessible Self-Consistent Field Theory for Block Polymer Materials Discovery [J].
Arora, Akash ;
Qin, Jian ;
Morse, David C. ;
Delaney, Kris T. ;
Fredrickson, Glenn H. ;
Bates, Frank S. ;
Dorfman, Kevin D. .
MACROMOLECULES, 2016, 49 (13) :4675-4690
[29]   Accelerating self-consistent field theory of block polymers in a variable unit cell [J].
Arora, Akash ;
Morse, David C. ;
Bates, Frank S. ;
Dorfman, Kevin D. .
JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (24)
[30]   Self-consistent-field method for correlation calculation within density-matrix-functional theory [J].
Irimia, Marinela ;
Wang, Yu ;
Fei, Yifan ;
Wang, Jian .
PHYSICAL REVIEW A, 2023, 108 (05)