In the present paper, we prove a new theorem, resulting in an update formula for linear regression model residuals calculating the exact k-fold cross-validation residuals for any choice of cross-validation strategy without model refitting. The required matrix inversions are limited by the cross-validation segment sizes and can be executed with high efficiency in parallel. The well-known formula for leave-one-out cross-validation follows as a special case of the theorem. In situations where the cross-validation segments consist of small groups of repeated measurements, we suggest a heuristic strategy for fast serial approximations of the cross-validated residuals and associated Predicted Residual Sum of Squares ( PRESS ) statistic. We also suggest strategies for efficient estimation of the minimum PRESS value and full PRESS function over a selected interval of regularisation values. The computational effectiveness of the parameter selection for Ridge- and Tikhonov regression modelling resulting from our theoretical findings and heuristic arguments is demonstrated in several applications with real and highly multivariate datasets.
机构:
Emory Univ, Dept Biostat & Bioinformat, Atlanta, GA 30322 USAEmory Univ, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA
Benkeser, David
Petersen, Maya
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Grad Grp Biostat, Berkeley, CA 94720 USAEmory Univ, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA
Petersen, Maya
van der Laan, Mark J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Grad Grp Biostat, Berkeley, CA 94720 USA
Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USAEmory Univ, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA
机构:
Emory Univ, Dept Biostat & Bioinformat, Atlanta, GA 30322 USAEmory Univ, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA
Benkeser, David
Petersen, Maya
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Grad Grp Biostat, Berkeley, CA 94720 USAEmory Univ, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA
Petersen, Maya
van der Laan, Mark J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Grad Grp Biostat, Berkeley, CA 94720 USA
Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USAEmory Univ, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA