DYNAMICAL SYMMETRY OF A SEMICONFINED HARMONIC OSCILLATOR MODEL WITH A POSITION-DEPENDENT EFFECTIVE MASS

被引:0
|
作者
Jafarovand, E. I. [1 ]
Nagiyev, S. M. [1 ]
机构
[1] State Agcy Sci & Higher Educ, Inst Phys, Javid Ave 131, AZ-1143 Baku, Azerbaijan
关键词
position-dependent effective mass; quantum harmonic oscillator; semiconfinement effect; Heisenberg-Lie algebra; exact expression; SCHRODINGER-EQUATION; SUPERSYMMETRIC APPROACH; EXPLICIT SOLUTION; SYSTEMS; ANALOGS; GROWTH;
D O I
10.1016/S0034-4877(23)00070-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dynamical symmetry algebra for a semiconfined harmonic oscillator model with a position-dependent effective mass is constructed. Selecting the starting point as a well-known factorization method of the Hamiltonian under consideration, we have found three basis elements of this algebra. The algebra defined through those basis elements is an su (1, 1) Heisenberg-Lie algebra. Different special cases and the limit relations from the basis elements to the Heisenberg-Weyl algebra of the nonrelativistic quantum harmonic oscillator are discussed, too.
引用
收藏
页码:209 / 225
页数:17
相关论文
共 50 条