CoFe2O4/WS2 as a highly active heterogeneous catalyst for the efficient degradation of sulfathiazole by activation of peroxymonosulfate

被引:7
作者
Li, Yajuan [1 ]
Wang, Qiongfang [1 ]
Zhang, Xin [2 ]
Dong, Lei [2 ]
Yuan, Yulin [1 ]
Peng, Cheng [1 ]
Zhang, Min [1 ]
Rao, Pinhua [1 ]
Pervez, Md. Nahid [3 ]
Gao, Naiyun [4 ]
机构
[1] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201600, Peoples R China
[2] Shanghai Municipal Engn Design Inst Grp Co LTD, Shanghai 200092, Peoples R China
[3] SUNY Albany, Dept Environm & Sustainable Engn, Albany, NY 12222 USA
[4] Tongji Univ, State Key Lab Pollut Control Reuse, Shanghai 200092, Peoples R China
关键词
Advanced oxidation processes; Catalysis; Sulfathiazole degradation; Radical/nonradical; ADVANCED OXIDATION; INORGANIC ANIONS; RADICALS; SULFATE; ANTIBIOTICS; WATER; PERSULFATE; KINETICS; REMOVAL; CU;
D O I
10.1016/j.jwpe.2023.104714
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, MFe2O4/WS2 (M = Co, Cu, Mn, Ni) catalysts were synthesized to activate peroxymonosulfate (PMS) for sulfathiazole (STZ) degradation by decorating with WS2 on the surface of a series of spinel-type transition metal oxides. It was found that the CoFe2O4/WS2/PMS exhibited a greater ability to degrade sulfathiazole (STZ) than other systems. More specifically, the catalyst facilitated Fe3+/Fe2+ recycling to activate PMS efficiently and maintained synergies between CoFe2O4 and WS2 to degrade pollutants. The CoFe2O4/WS2 dosage, PMS concentration, solution pH, inorganic anions, and natural organic matter, which could affect the catalytic efficiency, were inspected. The experimental results manifested that the catalyst displayed outstanding performance in the pH range from 5 to 9. Besides, electron paramagnetic resonance spectroscopy and radical quenching experiments confirmed the presence of HO center dot, SO4 center dot-, O-2(center dot-), and O-1(2). Based on detected intermediates, the plausible degradation pathway of STZ was proposed.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Efficient peroxymonosulfate activation through a simple physical mixture of FeS2 and WS2 for carbamazepine degradation
    Gou, Ge
    Kang, Shurui
    Zhao, Hailing
    Liu, Chao
    Li, Naiwen
    Lai, Bo
    Li, Jun
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 290
  • [32] Efficient degradation of Rhodamine B in water by CoFe2O4/H2O2 and CoFe2O4/PMS systems: A comparative study
    Liu, Dongdong
    Chen, Dengqian
    Hao, Zhengkai
    Tang, Yibo
    Jiang, Lipeng
    Li, Tianqi
    Tian, Bing
    Yan, Cuiping
    Luo, Yuan
    Jia, Boyin
    CHEMOSPHERE, 2022, 307
  • [33] Self-supporting CoFe2O4 nanoparticles on 2D g-C3N4/2D loofah activated carbon mediated peroxymonosulfate activation for tetracycline degradation
    Niu, Beibei
    Li, Wenjun
    Geng, Na
    Li, Shuaichen
    Tang, Wangshu
    Zhang, Xiaoxiao
    Huang, Congshu
    Wang, Jianzhi
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (05):
  • [34] MoS2/CoMoO4 composite heterogeneous catalyst towards enhanced activation of peroxymonosulfate for the efficient degradation of tetracycline hydrochloride
    Chen, Wei
    Sun, Dedong
    Ma, Hongchao
    Wang, Guowen
    Zhang, Xinxin
    Hao, Jun
    ENVIRONMENTAL RESEARCH, 2025, 271
  • [35] Efficient Activation of Peroxymonosulfate for Degradation of Rhodamine B by Anchoring CoFe2O4 on MoS2 Nanoflower-Modified Biochar
    Li, Wantao
    Xu, Yunlan
    Zhong, Dengjie
    Tang, Danli
    Xiang, Tanxia
    Fan, Chunmiao
    Yang, Yuanfang
    LANGMUIR, 2025, 41 (10) : 6903 - 6919
  • [36] Highly Efficient Degradation of Sulfamethoxazole Using Activating Peracetic Acid with CoFe2O4/CuO
    Liu, Zhenzhong
    Wan, Siwen
    Wu, Yang
    Wang, Boyan
    Ji, Hongliang
    ACTA PHYSICO-CHIMICA SINICA, 2023, 39 (05)
  • [37] Activation of peroxymonosulfate by CuFe2O4-CoFe2O4 composite catalyst for efficient bisphenol a degradation: Synthesis, catalytic mechanism and products toxicity assessment
    Li, Zhiying
    Wang, Fei
    Zhang, Yimei
    Lai, Yuxian
    Fang, Qinglu
    Duan, Yaxiao
    CHEMICAL ENGINEERING JOURNAL, 2021, 423
  • [38] Enhanced Degradation of Methyl Orange with CoFe2O4@Zeolite Catalyst as Peroxymonosulfate Activator: Performance and Mechanism
    Wang Lei
    Li Jianjun
    Ning Jun
    Hu Tianyu
    Wang Hongyang
    Zhang Zhanqun
    Wu Linxin
    JOURNAL OF INORGANIC MATERIALS, 2023, 38 (04) : 469 - +
  • [39] Highly-efficient degradation of triclosan attributed to peroxymonosulfate activation by heterogeneous catalyst g-C3N4/MnFe2O4
    Wang, Jing
    Yue, Min
    Han, Yuze
    Xu, Xing
    Yue, Qinyan
    Xu, Shiping
    CHEMICAL ENGINEERING JOURNAL, 2020, 391
  • [40] Activation of peroxymonosulfate by Al2O3-based CoFe2O4 for the degradation of sulfachloropyridazine sodium: Kinetics and mechanism
    Wang, Qiongfang
    Shao, Yisheng
    Gao, Naiyun
    Chu, Wenhai
    Chen, Juxiang
    Lu, Xian
    Zhu, Yanping
    An, Na
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 189 : 176 - 185