CoFe2O4/WS2 as a highly active heterogeneous catalyst for the efficient degradation of sulfathiazole by activation of peroxymonosulfate

被引:13
作者
Li, Yajuan [1 ]
Wang, Qiongfang [1 ]
Zhang, Xin [2 ]
Dong, Lei [2 ]
Yuan, Yulin [1 ]
Peng, Cheng [1 ]
Zhang, Min [1 ]
Rao, Pinhua [1 ]
Pervez, Md. Nahid [3 ]
Gao, Naiyun [4 ]
机构
[1] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201600, Peoples R China
[2] Shanghai Municipal Engn Design Inst Grp Co LTD, Shanghai 200092, Peoples R China
[3] SUNY Albany, Dept Environm & Sustainable Engn, Albany, NY 12222 USA
[4] Tongji Univ, State Key Lab Pollut Control Reuse, Shanghai 200092, Peoples R China
关键词
Advanced oxidation processes; Catalysis; Sulfathiazole degradation; Radical/nonradical; ADVANCED OXIDATION; INORGANIC ANIONS; RADICALS; SULFATE; ANTIBIOTICS; WATER; PERSULFATE; KINETICS; REMOVAL; CU;
D O I
10.1016/j.jwpe.2023.104714
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, MFe2O4/WS2 (M = Co, Cu, Mn, Ni) catalysts were synthesized to activate peroxymonosulfate (PMS) for sulfathiazole (STZ) degradation by decorating with WS2 on the surface of a series of spinel-type transition metal oxides. It was found that the CoFe2O4/WS2/PMS exhibited a greater ability to degrade sulfathiazole (STZ) than other systems. More specifically, the catalyst facilitated Fe3+/Fe2+ recycling to activate PMS efficiently and maintained synergies between CoFe2O4 and WS2 to degrade pollutants. The CoFe2O4/WS2 dosage, PMS concentration, solution pH, inorganic anions, and natural organic matter, which could affect the catalytic efficiency, were inspected. The experimental results manifested that the catalyst displayed outstanding performance in the pH range from 5 to 9. Besides, electron paramagnetic resonance spectroscopy and radical quenching experiments confirmed the presence of HO center dot, SO4 center dot-, O-2(center dot-), and O-1(2). Based on detected intermediates, the plausible degradation pathway of STZ was proposed.
引用
收藏
页数:14
相关论文
共 87 条
[1]   Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt [J].
Anipsitakis, GP ;
Dionysiou, DD .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (20) :4790-4797
[2]   Hybrid MnFe-LDO-biochar nanopowders for degradation of metronidazole via UV-light-driven photocatalysis: Characterization and mechanism studies [J].
Azalok, Khawla Abdulmutalib ;
Oladipo, Akeem Adeyemi ;
Gazi, Mustafa .
CHEMOSPHERE, 2021, 268
[3]   Acceleration of peroxymonosulfate decomposition by a magnetic MoS2/CuFe2O4 heterogeneous catalyst for rapid degradation of fluoxetine [J].
Bai, Rui ;
Yan, Weifu ;
Xiao, Yong ;
Wang, Siqi ;
Tian, Xiaochun ;
Li, Junpeng ;
Xiao, Xiaofeng ;
Lu, Xiaoquan ;
Zhao, Feng .
CHEMICAL ENGINEERING JOURNAL, 2020, 397
[4]   Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation [J].
Bengtsson-Palme, Johan ;
Larsson, D. G. Joakim .
ENVIRONMENT INTERNATIONAL, 2016, 86 :140-149
[5]   CRITICAL-REVIEW OF RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, HYDROGEN-ATOMS AND HYDROXYL RADICALS (.OH/.O-) IN AQUEOUS-SOLUTION [J].
BUXTON, GV ;
GREENSTOCK, CL ;
HELMAN, WP ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1988, 17 (02) :513-886
[6]   Degradation of bisphenol A by UV/persulfate process in the presence of bromide: Role of reactive bromine [J].
Cai, Anhong ;
Deng, Jing ;
Ling, Xiao ;
Ye, Cheng ;
Sun, Huihong ;
Deng, Yang ;
Zhou, Shiqing ;
Li, Xueyan .
WATER RESEARCH, 2022, 215
[7]   Octadecylamine degradation through catalytic activation of peroxymonosulfate by Fe-Mn layered double hydroxide [J].
Chen, Gong ;
Nengzi, Li-chao ;
Li, Bo ;
Gao, Yingjie ;
Zhu, Guixian ;
Cheng, Xiuwen .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 695
[8]   Novel magnetic MnO2/MnFe2O4 nanocomposite as a heterogeneous catalyst for activation of peroxymonosulfate (PMS) toward oxidation of organic pollutants [J].
Chen, Gong ;
Zhang, Xinyi ;
Gao, Yingjie ;
Zhu, Guixian ;
Cheng, Qingfeng ;
Cheng, Xiuwen .
SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 213 :456-464
[9]   Enhanced catalytic activities of natural iron ore in peroxymonosulfate activation assisted by WS2 for rapid degradation of pollutants [J].
Chen, Lu ;
Wang, Chao ;
He, Wenjie ;
Li, Haibo ;
Ye, Zhihong ;
Xu, Yin .
SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 328
[10]   Efficient Ofloxacin degradation with Co(II)-doped MoS2 nano-flowers as PMS activator under visible-light irradiation [J].
Chen, Peng ;
Gou, Yejing ;
Ni, Jiaming ;
Liang, Yumeng ;
Yang, Bingqiao ;
Jia, Feifei ;
Song, Shaoxian .
CHEMICAL ENGINEERING JOURNAL, 2020, 401