Modulating the Formation of Coke to Improve the Production of Light Olefins from CO2 Hydrogenation over In2O3 and SSZ-13 Catalysts

被引:3
|
作者
Di, Wei [1 ]
Achour, Abdenour [1 ]
Ho, Phuoc Hoang [1 ]
Ghosh, Sreetama [1 ]
Pajalic, Oleg [2 ]
Josefsson, Lars [3 ]
Olsson, Louise [1 ]
Creaser, Derek [1 ]
机构
[1] Chalmers Univ Technol, Chem Engn & Competence Ctr Catalysis, S-41296 Gothenburg, Sweden
[2] Perstorp Specialty Chem AB, S-28480 Perstorp, Sweden
[3] Josefsson Sustainable Chem AB, S-44448 Stenungsund, Sweden
关键词
HIGHLY SELECTIVE CONVERSION; CARBON-DIOXIDE; METHANOL SYNTHESIS; HYDROCARBONS; LIFETIME; SAPO-34; SIZE; ALUMINUM; ETHENE; H-2;
D O I
10.1021/acs.energyfuels.3c03172
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Moderately acidic aluminophosphates (SAPOs) are often integrated with methanol synthesis catalysts for the hydrogenation of CO2 to olefins, but they suffer from hydrothermal decomposition. Here, an alternative SSZ-13 zeolite with high hydrothermal stability is synthesized and coupled with an In2O3 catalyst in a hybrid system. Its performance regarding selectivity for olefins and coke formation was investigated for CO2 hydrogenation under varying temperatures and pressures. Various reactions occur, producing mainly CO and different hydrocarbons. The results indicate that the hydrogenation of hydrocarbons are dominant at high temperatures (around 400 degrees C) over SSZ-13 zeolite with a high acid density and that the coke deposition rate is slow. Polymethylbenzenes are the main coke species, but the selectivity for light olefins is low among hydrocarbons at high temperatures. However, at low temperatures (around 325 degrees C), and especially under high pressure (40 bar), methanol disproportionation becomes significant. This results in an increased selectivity for light olefins; however, it also leads to a rapid coke deposition, which gives inactive adamantanes as the main coke species that block the pores and cause rapid deactivation. However, after coking at 325 degrees C and regeneration at 400 degrees C under the reaction atmosphere, the accumulated adamantanes can be decomposed into smaller coke species, which reopens the channel structure and generates modulated active sites within the zeolite, resulting in a higher yield of olefins without deactivation. The performances of acidic SSZ-13 zeolites, with varying ratios of Si/Al in transient experiments, further verified that a dynamic balance exists between the formation and degradation of coke within the SSZ-13 zeolite during a long-term CO2 hydrogenation reaction. This balance can be achieved by optimizing the reaction conditions to match the acid density of the catalyst. Using the conditions of 20 bar and 375 degrees C, with a H-2 to CO2 mole ratio of 3, the results obtained for the precoked hybrid catalysts of In2O3 and SSZ-13 (Si/Al = 25) exhibited very stable activity, with the selectivity for light olefins (based on hydrocarbons formed) of max. 70% after 100 h time-on-stream. This work provides new insights into the design of stable hybrid catalysts, especially the influence of a precoking process for SSZ-13 zeolite in the production of light olefins.
引用
收藏
页码:17382 / 17398
页数:17
相关论文
共 50 条
  • [31] CO2 hydrogenation to methanol over Pd/MnO/In2O3 catalyst
    Tian, Guanfeng
    Wu, Youqing
    Wu, Shiyong
    Huang, Sheng
    Gao, Jinsheng
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (01):
  • [32] Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst
    Xinyu Jia
    Kaihang Sun
    Jing Wang
    Chenyang Shen
    Chang-jun Liu
    Journal of Energy Chemistry, 2020, 50 (11) : 409 - 415
  • [33] CO2 hydrogenation to methanol over the copper promoted In2O3 catalyst
    Rui Zou
    Chenyang Shen
    Kaihang Sun
    Xinbin Ma
    Zhuoshi Li
    Maoshuai Li
    Chang-Jun Liu
    Journal of Energy Chemistry, 2024, 93 (06) : 135 - 145
  • [34] Operando spectroscopic studies on redox mechanism for CO2 hydrogenation to CO on In2O3 catalysts
    Li, Lingcong
    Chen, Duotian
    Anzai, Akihiko
    Zhang, Ningqiang
    Kang, Yikun
    Qian, Yucheng
    Du, Pengfei
    Fakir, Abdellah Ait El
    Toyao, Takashi
    Shimizu, K.
    JOURNAL OF CATALYSIS, 2024, 439
  • [35] Conversion of CO2 and H2 into propane over InZrOx and SSZ-13 composite catalyst
    Liu, Zhaopeng
    Ni, Youming
    Sun, Tantan
    Zhu, Wenliang
    Liu, Zhongmin
    JOURNAL OF ENERGY CHEMISTRY, 2021, 54 : 111 - 117
  • [36] Conversion of CO2 and H2 into propane over InZrOx and SSZ-13 composite catalyst
    Zhaopeng Liu
    Youming Ni
    Tantan Sun
    Wenliang Zhu
    Zhongmin Liu
    Journal of Energy Chemistry, 2021, 54 (03) : 111 - 117
  • [37] CO2 hydrogenation to light olefins over Fe-Co/K-Al2O3 catalysts prepared via microwave calcination
    Polsomboon, Nutkamaithorn
    Numpilai, Thanapha
    Jitapunkul, Kulpavee
    Faungnawakij, Kajornsak
    Chareonpanich, Metta
    An, Xingda
    He, Le
    Rupprechter, Guenther
    Witoon, Thongthai
    REACTION CHEMISTRY & ENGINEERING, 2025, 10 (03): : 515 - 533
  • [38] CO2 hydrogenation to light olefins over Fe-Co/K-Al2O3 catalysts prepared via microwave calcination
    Polsomboon, Nutkamaithorn
    Numpilai, Thanapha
    Jitapunkul, Kulpavee
    Faungnawakij, Kajornsak
    Chareonpanich, Metta
    An, Xingda
    He, Le
    Rupprechter, Guenther
    Witoon, Thongthai
    REACTION CHEMISTRY & ENGINEERING, 2024,
  • [39] Effects of oxygen vacancy formation energy and Pt doping on the CO2 hydrogenation activity of In2O3 catalysts
    Wei, Zhangqian
    Bao, Yuanjie
    Wang, Yuchen
    Li, Shenggang
    CATALYSIS SCIENCE & TECHNOLOGY, 2025, 15 (05) : 1538 - 1546
  • [40] Boosting the Production of Light Olefins from CO2 Hydrogenation over Fe-Co Bimetallic Catalysts Derived from Layered Double Hydroxide
    Yuan, Fei
    Zhang, Guanghui
    Wang, Mingrui
    Zhu, Jie
    Zhang, Miao
    Ding, Fanshu
    Cheng, Zening
    Song, Chunshan
    Guo, Xinwen
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (21) : 8210 - 8221