Modulating the Formation of Coke to Improve the Production of Light Olefins from CO2 Hydrogenation over In2O3 and SSZ-13 Catalysts

被引:3
|
作者
Di, Wei [1 ]
Achour, Abdenour [1 ]
Ho, Phuoc Hoang [1 ]
Ghosh, Sreetama [1 ]
Pajalic, Oleg [2 ]
Josefsson, Lars [3 ]
Olsson, Louise [1 ]
Creaser, Derek [1 ]
机构
[1] Chalmers Univ Technol, Chem Engn & Competence Ctr Catalysis, S-41296 Gothenburg, Sweden
[2] Perstorp Specialty Chem AB, S-28480 Perstorp, Sweden
[3] Josefsson Sustainable Chem AB, S-44448 Stenungsund, Sweden
关键词
HIGHLY SELECTIVE CONVERSION; CARBON-DIOXIDE; METHANOL SYNTHESIS; HYDROCARBONS; LIFETIME; SAPO-34; SIZE; ALUMINUM; ETHENE; H-2;
D O I
10.1021/acs.energyfuels.3c03172
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Moderately acidic aluminophosphates (SAPOs) are often integrated with methanol synthesis catalysts for the hydrogenation of CO2 to olefins, but they suffer from hydrothermal decomposition. Here, an alternative SSZ-13 zeolite with high hydrothermal stability is synthesized and coupled with an In2O3 catalyst in a hybrid system. Its performance regarding selectivity for olefins and coke formation was investigated for CO2 hydrogenation under varying temperatures and pressures. Various reactions occur, producing mainly CO and different hydrocarbons. The results indicate that the hydrogenation of hydrocarbons are dominant at high temperatures (around 400 degrees C) over SSZ-13 zeolite with a high acid density and that the coke deposition rate is slow. Polymethylbenzenes are the main coke species, but the selectivity for light olefins is low among hydrocarbons at high temperatures. However, at low temperatures (around 325 degrees C), and especially under high pressure (40 bar), methanol disproportionation becomes significant. This results in an increased selectivity for light olefins; however, it also leads to a rapid coke deposition, which gives inactive adamantanes as the main coke species that block the pores and cause rapid deactivation. However, after coking at 325 degrees C and regeneration at 400 degrees C under the reaction atmosphere, the accumulated adamantanes can be decomposed into smaller coke species, which reopens the channel structure and generates modulated active sites within the zeolite, resulting in a higher yield of olefins without deactivation. The performances of acidic SSZ-13 zeolites, with varying ratios of Si/Al in transient experiments, further verified that a dynamic balance exists between the formation and degradation of coke within the SSZ-13 zeolite during a long-term CO2 hydrogenation reaction. This balance can be achieved by optimizing the reaction conditions to match the acid density of the catalyst. Using the conditions of 20 bar and 375 degrees C, with a H-2 to CO2 mole ratio of 3, the results obtained for the precoked hybrid catalysts of In2O3 and SSZ-13 (Si/Al = 25) exhibited very stable activity, with the selectivity for light olefins (based on hydrocarbons formed) of max. 70% after 100 h time-on-stream. This work provides new insights into the design of stable hybrid catalysts, especially the influence of a precoking process for SSZ-13 zeolite in the production of light olefins.
引用
收藏
页码:17382 / 17398
页数:17
相关论文
共 50 条
  • [21] CO2 hydrogenation to methanol over Rh/In2O3 catalyst
    Wang, Jing
    Sun, Kaihang
    Jia, Xinyu
    Liu, Chang-jun
    CATALYSIS TODAY, 2021, 365 : 341 - 347
  • [22] Enhanced CO2 hydrogenation to higher alcohols over K-Co promoted In2O3 catalysts
    Witoon, Thongthai
    Numpilai, Thanapha
    Nijpanich, Supinya
    Chanlek, Narong
    Kidkhunthod, Pinit
    Cheng, Chin Kui
    Ng, Kim Hoong
    Vo, Dai-Viet N.
    Ittisanronnachai, Somlak
    Wattanakit, Chularat
    Chareonpanich, Metta
    Limtrakul, Jumras
    CHEMICAL ENGINEERING JOURNAL, 2022, 431
  • [23] Research progress on catalysts for CO2 hydrogenation to light olefins
    Du, Fangyu
    He, You
    Song, Xin'ao
    Zhang, Qianwen
    Sun, Jinchang
    Jingxi Huagong/Fine Chemicals, 2023, 40 (07): : 1405 - 1413
  • [24] Study on CO2 hydrogenation to Light Olefins on Iron Catalysts
    Wang, Chengxue
    Wang, Xiangbo
    RENEWABLE AND SUSTAINABLE ENERGY, PTS 1-7, 2012, 347-353 : 808 - 811
  • [25] Efficient hydrogenation of CO2 to methanol over Pd/In2O3/SBA-15 catalysts
    Jiang, Haoxi
    Lin, Jing
    Wu, Xiaohui
    Wang, Wenyi
    Chen, Yifei
    Zhang, Minhua
    JOURNAL OF CO2 UTILIZATION, 2020, 36 : 33 - 39
  • [26] Reaction pathways and the role of the carbonates during CO2 hydrogenation over hexagonal In2O3 catalysts
    Qin, Bin
    Zhou, Zhimin
    Li, Shenggang
    APPLIED SURFACE SCIENCE, 2021, 542 (542)
  • [27] CO2 hydrogenation to dimethyl ether over In2O3 catalysts supported on aluminosilicate halloysite nanotubes
    Pechenkin, Alexey
    Potemkin, Dmitry
    Badmaev, Sukhe
    Smirnova, Ekaterina
    Cherednichenko, Kirill
    Vinokurov, Vladimir
    Glotov, Aleksandr
    GREEN PROCESSING AND SYNTHESIS, 2021, 10 (01) : 594 - 605
  • [28] Cr2O3 Promoted In2O3 Catalysts for CO2 Hydrogenation to Methanol
    Yang, Yuying
    Guo, Meng
    Zhao, Fuzhen
    CHEMPHYSCHEM, 2024, 25 (01)
  • [29] Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst
    Jia, Xinyu
    Sun, Kaihang
    Wang, Jing
    Shen, Chenyang
    Liu, Chang-jun
    JOURNAL OF ENERGY CHEMISTRY, 2020, 50 : 409 - 415
  • [30] CO2 hydrogenation to methanol over the copper promoted In2O3 catalyst
    Zou, Rui
    Shen, Chenyang
    Sun, Kaihang
    Ma, Xinbin
    Li, Zhuoshi
    Li, Maoshuai
    Liu, Chang-Jun
    JOURNAL OF ENERGY CHEMISTRY, 2024, 93 : 135 - 145