Spatio-Temporal Anomaly Detection with Graph Networks for Data Quality Monitoring of the Hadron Calorimeter

被引:1
|
作者
Asres, Mulugeta Weldezgina [1 ]
Omlin, Christian Walter [1 ]
Wang, Long [2 ]
Yu, David [3 ]
Parygin, Pavel [4 ]
Dittmann, Jay [5 ]
Karapostoli, Georgia [6 ]
Seidel, Markus [7 ]
Venditti, Rosamaria [8 ]
Lambrecht, Luka [9 ]
Usai, Emanuele [10 ]
Ahmad, Muhammad [11 ]
Menendez, Javier Fernandez [12 ]
Maeshima, Kaori [13 ]
机构
[1] Univ Agder, Ctr Artificial Intelligence Res, Dept Informat & Commun Technol, N-4879 Grimstad, Norway
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[3] Brown Univ, Dept Phys, Providence, RI 02912 USA
[4] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[5] Baylor Univ, Dept Phys, Waco, TX 76706 USA
[6] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[7] Riga Tech Univ, Inst Particle Phys & Accelerator Technol, LV-1048 Riga, Latvia
[8] Bari Univ, Dept Phys, I-70121 Bari, Italy
[9] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium
[10] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA
[11] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[12] Univ Oviedo, Inst Univ Ciencias & Tecnol Espaciales Asturias, Oviedo 33004, Spain
[13] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
基金
巴西圣保罗研究基金会; 新加坡国家研究基金会;
关键词
anomaly detection; monitoring; spatio-temporal; deep learning; graph networks; particle sensors; CMS; LHC; RECURRENT NEURAL-NETWORKS;
D O I
10.3390/s23249679
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The Compact Muon Solenoid (CMS) experiment is a general-purpose detector for high-energy collision at the Large Hadron Collider (LHC) at CERN. It employs an online data quality monitoring (DQM) system to promptly spot and diagnose particle data acquisition problems to avoid data quality loss. In this study, we present a semi-supervised spatio-temporal anomaly detection (AD) monitoring system for the physics particle reading channels of the Hadron Calorimeter (HCAL) of the CMS using three-dimensional digi-occupancy map data of the DQM. We propose the GraphSTAD system, which employs convolutional and graph neural networks to learn local spatial characteristics induced by particles traversing the detector and the global behavior owing to shared backend circuit connections and housing boxes of the channels, respectively. Recurrent neural networks capture the temporal evolution of the extracted spatial features. We validate the accuracy of the proposed AD system in capturing diverse channel fault types using the LHC collision data sets. The GraphSTAD system achieves production-level accuracy and is being integrated into the CMS core production system for real-time monitoring of the HCAL. We provide a quantitative performance comparison with alternative benchmark models to demonstrate the promising leverage of the presented system.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Spatio-Temporal Unity Networking for Video Anomaly Detection
    Li, Yuanyuan
    Cai, Yiheng
    Liu, Jiaqi
    Lang, Shinan
    Zhang, Xinfeng
    IEEE ACCESS, 2019, 7 : 172425 - 172432
  • [32] Spatio-temporal Anomaly Detection in Intelligent Transportation Systems
    Hassan, Mai H.
    Tizghadam, Ali
    Leon-Garcia, Alberto
    10TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2019) / THE 2ND INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40 2019) / AFFILIATED WORKSHOPS, 2019, 151 : 852 - 857
  • [33] Hierarchical spatio-temporal graph convolutional neural networks for traffic data imputation
    Xu, Dongwei
    Peng, Hang
    Tang, Yufu
    Guo, Haifeng
    INFORMATION FUSION, 2024, 106
  • [34] Spatio-temporal graph neural networks for missing data completion in traffic prediction
    Chen, Jiahui
    Yang, Lina
    Yang, Yi
    Peng, Ling
    Ge, Xingtong
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2024,
  • [35] Traffic Forecasting with Spatio-Temporal Graph Neural Networks
    Shah, Shehal
    Doshi, Prince
    Mangle, Shlok
    Tawde, Prachi
    Sawant, Vinaya
    ARTIFICIAL INTELLIGENCE AND KNOWLEDGE PROCESSING, AIKP 2024, 2025, 2228 : 183 - 197
  • [36] Spatio-temporal graph-based CNNs for anomaly detection in weakly-labeled videos
    Mu, Huiyu
    Sun, Ruizhi
    Wang, Miao
    Chen, Zeqiu
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (04)
  • [37] Spatio-temporal graph attention networks for traffic prediction
    Ma, Chuang
    Yan, Li
    Xu, Guangxia
    TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2024, 16 (09): : 978 - 988
  • [38] Online Anomaly Detection of Wind Turbines Based on Hierarchical Spatio-temporal Graph Neural Network
    Zheng Y.
    Wang C.
    Liu B.
    Yang J.
    Huang C.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2024, 48 (05): : 107 - 119
  • [39] Interpretable Stock Anomaly Detection Based on Spatio-Temporal Relation Networks With Genetic Algorithm
    Cheong, Mei-See
    Wu, Mei-Chen
    Huang, Szu-Hao
    IEEE ACCESS, 2021, 9 : 68302 - 68319
  • [40] Enhancing Video Anomaly Detection Using Spatio-Temporal Autoencoders and Convolutional LSTM Networks
    Almahadin G.
    Subburaj M.
    Hiari M.
    Sathasivam Singaram S.
    Kolla B.P.
    Dadheech P.
    Vibhute A.D.
    Sengan S.
    SN Computer Science, 5 (1)