Spatio-Temporal Anomaly Detection with Graph Networks for Data Quality Monitoring of the Hadron Calorimeter

被引:1
|
作者
Asres, Mulugeta Weldezgina [1 ]
Omlin, Christian Walter [1 ]
Wang, Long [2 ]
Yu, David [3 ]
Parygin, Pavel [4 ]
Dittmann, Jay [5 ]
Karapostoli, Georgia [6 ]
Seidel, Markus [7 ]
Venditti, Rosamaria [8 ]
Lambrecht, Luka [9 ]
Usai, Emanuele [10 ]
Ahmad, Muhammad [11 ]
Menendez, Javier Fernandez [12 ]
Maeshima, Kaori [13 ]
机构
[1] Univ Agder, Ctr Artificial Intelligence Res, Dept Informat & Commun Technol, N-4879 Grimstad, Norway
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[3] Brown Univ, Dept Phys, Providence, RI 02912 USA
[4] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[5] Baylor Univ, Dept Phys, Waco, TX 76706 USA
[6] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[7] Riga Tech Univ, Inst Particle Phys & Accelerator Technol, LV-1048 Riga, Latvia
[8] Bari Univ, Dept Phys, I-70121 Bari, Italy
[9] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium
[10] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA
[11] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[12] Univ Oviedo, Inst Univ Ciencias & Tecnol Espaciales Asturias, Oviedo 33004, Spain
[13] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
基金
巴西圣保罗研究基金会; 新加坡国家研究基金会;
关键词
anomaly detection; monitoring; spatio-temporal; deep learning; graph networks; particle sensors; CMS; LHC; RECURRENT NEURAL-NETWORKS;
D O I
10.3390/s23249679
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The Compact Muon Solenoid (CMS) experiment is a general-purpose detector for high-energy collision at the Large Hadron Collider (LHC) at CERN. It employs an online data quality monitoring (DQM) system to promptly spot and diagnose particle data acquisition problems to avoid data quality loss. In this study, we present a semi-supervised spatio-temporal anomaly detection (AD) monitoring system for the physics particle reading channels of the Hadron Calorimeter (HCAL) of the CMS using three-dimensional digi-occupancy map data of the DQM. We propose the GraphSTAD system, which employs convolutional and graph neural networks to learn local spatial characteristics induced by particles traversing the detector and the global behavior owing to shared backend circuit connections and housing boxes of the channels, respectively. Recurrent neural networks capture the temporal evolution of the extracted spatial features. We validate the accuracy of the proposed AD system in capturing diverse channel fault types using the LHC collision data sets. The GraphSTAD system achieves production-level accuracy and is being integrated into the CMS core production system for real-time monitoring of the HCAL. We provide a quantitative performance comparison with alternative benchmark models to demonstrate the promising leverage of the presented system.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Anomaly traffic detection in heterogeneous lightweight networks based on spatio-temporal features
    Liang, Qingyun
    Cong, Ligang
    Du, Heng
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (05):
  • [22] Monitoring industrial control systems via spatio-temporal graph neural networks
    Wang, Yue
    Peng, Hao
    Wang, Gang
    Tang, Xianghong
    Wang, Xuejian
    Liu, Chunyang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 122
  • [23] Spatio-temporal based video anomaly detection using deep neural networks
    Chaurasia R.K.
    Jaiswal U.C.
    International Journal of Information Technology, 2023, 15 (3) : 1569 - 1581
  • [24] Traffic Anomaly Detection based on Spatio-Temporal Hypergraph Convolution Neural Networks
    Feng, Jiangtao
    Zhang, Yong
    Piao, Xinglin
    Hu, Yongli
    Yin, Baocai
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 646
  • [25] Video Relation Detection with Spatio-Temporal Graph
    Qian, Xufeng
    Zhuang, Yueting
    Li, Yimeng
    Xiao, Shaoning
    Pu, Shiliang
    Xiao, Jun
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 84 - 93
  • [26] Contextual Anomaly Detection in Spatio-Temporal Data using Locally Dense Regions
    Anand, Gaurangi
    Nayak, Richi
    2018 IEEE 30TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2018, : 963 - 967
  • [27] Convex Polytope Ensembles for Spatio-Temporal Anomaly Detection
    Turchini, Francesco
    Seidenari, Lorenzo
    Del Bimbo, Alberto
    IMAGE ANALYSIS AND PROCESSING,(ICIAP 2017), PT I, 2017, 10484 : 174 - 184
  • [28] Transformer with Spatio-Temporal Representation for Video Anomaly Detection
    Sun, Xiaohu
    Chen, Jinyi
    Shen, Xulin
    Li, Hongjun
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2022, 2022, 13813 : 213 - 222
  • [29] Spatio-Temporal United Memory for Video Anomaly Detection
    Wang, Yunlong
    Chen, Mingyi
    Li, Jiaxin
    Li, Hongjun
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2022, 2022, 13813 : 84 - 93
  • [30] Anomaly Detection with a Spatio-Temporal Tracking of the Laser Spot
    Atienza, David
    Bielza, Concha
    Diaz, Javier
    Larranaga, Pedro
    PROCEEDINGS OF THE EIGHTH EUROPEAN STARTING AI RESEARCHER SYMPOSIUM (STAIRS 2016), 2016, 284 : 137 - 142