Spatio-Temporal Anomaly Detection with Graph Networks for Data Quality Monitoring of the Hadron Calorimeter

被引:1
|
作者
Asres, Mulugeta Weldezgina [1 ]
Omlin, Christian Walter [1 ]
Wang, Long [2 ]
Yu, David [3 ]
Parygin, Pavel [4 ]
Dittmann, Jay [5 ]
Karapostoli, Georgia [6 ]
Seidel, Markus [7 ]
Venditti, Rosamaria [8 ]
Lambrecht, Luka [9 ]
Usai, Emanuele [10 ]
Ahmad, Muhammad [11 ]
Menendez, Javier Fernandez [12 ]
Maeshima, Kaori [13 ]
机构
[1] Univ Agder, Ctr Artificial Intelligence Res, Dept Informat & Commun Technol, N-4879 Grimstad, Norway
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[3] Brown Univ, Dept Phys, Providence, RI 02912 USA
[4] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[5] Baylor Univ, Dept Phys, Waco, TX 76706 USA
[6] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[7] Riga Tech Univ, Inst Particle Phys & Accelerator Technol, LV-1048 Riga, Latvia
[8] Bari Univ, Dept Phys, I-70121 Bari, Italy
[9] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium
[10] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA
[11] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[12] Univ Oviedo, Inst Univ Ciencias & Tecnol Espaciales Asturias, Oviedo 33004, Spain
[13] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
基金
巴西圣保罗研究基金会; 新加坡国家研究基金会;
关键词
anomaly detection; monitoring; spatio-temporal; deep learning; graph networks; particle sensors; CMS; LHC; RECURRENT NEURAL-NETWORKS;
D O I
10.3390/s23249679
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The Compact Muon Solenoid (CMS) experiment is a general-purpose detector for high-energy collision at the Large Hadron Collider (LHC) at CERN. It employs an online data quality monitoring (DQM) system to promptly spot and diagnose particle data acquisition problems to avoid data quality loss. In this study, we present a semi-supervised spatio-temporal anomaly detection (AD) monitoring system for the physics particle reading channels of the Hadron Calorimeter (HCAL) of the CMS using three-dimensional digi-occupancy map data of the DQM. We propose the GraphSTAD system, which employs convolutional and graph neural networks to learn local spatial characteristics induced by particles traversing the detector and the global behavior owing to shared backend circuit connections and housing boxes of the channels, respectively. Recurrent neural networks capture the temporal evolution of the extracted spatial features. We validate the accuracy of the proposed AD system in capturing diverse channel fault types using the LHC collision data sets. The GraphSTAD system achieves production-level accuracy and is being integrated into the CMS core production system for real-time monitoring of the HCAL. We provide a quantitative performance comparison with alternative benchmark models to demonstrate the promising leverage of the presented system.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Spatio-Temporal Correlation Analysis of Online Monitoring Data for Anomaly Detection and Location in Distribution Networks
    Shi, Xin
    Qiu, Robert
    Ling, Zenan
    Yang, Fan
    Yang, Haosen
    He, Xing
    IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (02) : 995 - 1006
  • [2] Spatio-temporal Anomaly Detection in Traffic Data
    Wang, Qing
    Lv, Weifeng
    Du, Bowen
    ISCSIC'18: PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND INTELLIGENT CONTROL, 2018,
  • [3] Anomaly Detection in Maritime Domain based on Spatio-Temporal Analysis of AIS Data Using Graph Neural Networks
    Eljabu, Lubna
    Etemad, Mohammad
    Matwin, Stan
    2021 5TH INTERNATIONAL CONFERENCE ON VISION, IMAGE AND SIGNAL PROCESSING (ICVISP 2021), 2021, : 142 - 147
  • [4] Misbehavior detection with spatio-temporal graph neural networks ☆
    Yuce, Mehmet Fatih
    Erturk, Mehmet Ali
    Aydin, Muhammed Ali
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 116
  • [5] Graph Spatio-Temporal Networks for Condition Monitoring of Wind Turbine
    Jin, Xiaohang
    Lv, Shengye
    Kong, Ziqian
    Yang, Hongchun
    Zhang, Yuanming
    Guo, Yuanjing
    Xu, Zhengguo
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2024, 15 (04) : 2276 - 2286
  • [6] ADVERSARIAL ANOMALY DETECTION FOR MARKED SPATIO-TEMPORAL STREAMING DATA
    Zhu, Shixiang
    Yuchi, Henry Shaowu
    Xie, Yao
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8921 - 8925
  • [7] Spatio-Temporal Action Graph Networks
    Herzig, Roei
    Levi, Elad
    Xu, Huijuan
    Gao, Hang
    Brosh, Eli
    Wang, Xiaolong
    Globerson, Amir
    Darrell, Trevor
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 2347 - 2356
  • [8] A Hierarchical Spatio-Temporal Graph Convolutional Neural Network for Anomaly Detection in Videos
    Zeng, Xianlin
    Jiang, Yalong
    Ding, Wenrui
    Li, Hongguang
    Hao, Yafeng
    Qiu, Zifeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (01) : 200 - 212
  • [9] STGLR: A Spacecraft Anomaly Detection Method Based on Spatio-Temporal Graph Learning
    Lai, Yi
    Zhu, Ye
    Li, Li
    Lan, Qing
    Zuo, Yizheng
    SENSORS, 2025, 25 (02)
  • [10] HUAD: Hierarchical Urban Anomaly Detection Based on Spatio-Temporal Data
    Kong, Xiangjie
    Gao, Haoran
    Alfarraj, Osama
    Ni, Qichao
    Zheng, Chaofan
    Shen, Guojiang
    IEEE ACCESS, 2020, 8 : 26573 - 26582