Effect of glycine electrolyte additive on the electrochemical performance of aqueous zinc-ion batteries

被引:0
作者
Tang Xiao-Ning [1 ]
Xia Shu [1 ]
Luo Qiu-Yang [1 ]
Liu Jun -Nan [1 ]
Yang Xing -Fu [1 ]
Shao Jiao-Jing [1 ]
Xue An [2 ]
机构
[1] Guizhou Univ, Sch Mat & Mat, Guiyang 550025, Peoples R China
[2] Guizhou Normal Univ, Sch Mat & Architectural Engn, Guiyang 550025, Peoples R China
关键词
aqueous zinc-ion battery; electrolyte additive; glycine; Zn anodes; Zn dendrites; ANODES;
D O I
10.11862/CJIC.2023.128
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Aqueous zinc-ion batteries (AZIBs) using the Zn metal anode have been considered one of the next generation commercial batteries with high security, robust capacity, and low price. However, side reactions, Zn dendrites, and limited lifespan still constrain their practical applications. Herein, the electrolyte additive (glyeine, Gly) was introduced into the conventional ZnSO4, electrolyte (denoted as ZnSO4-Gly). The abundant polar groups (-COOH and -NH2) on the Gly can regulate the solvation structure of Zn2+ and thus redistribute Zn2+ deposition to avoid dendrites and side reactions. As a result, the excellent cycle life (3 000 h, at 1 mA center dot cm(-2) and 1 mA center dot cm(-2)) of the Zn vertical bar vertical bar Zn symmetric cell was realized in typical ZnSO4 electrolytes with only 50 mmol center dot L-1 of Cly additive, overwhelmingly larger than bare ZnSO4 (300 h). The Zn vertical bar vertical bar MnO2, battery with ZnSO4-Gly electrolyte displayed much better than the additive-free device in terms of specific capacity and capacity relent ion.
引用
收藏
页码:1501 / 1509
页数:9
相关论文
共 33 条
[1]   Rational Design of Sulfur-Doped Three-Dimensional Ti3C2Tx MXene/ZnS Heterostructure as Multifunctional Protective Layer for Dendrite-Free Zinc-Ion Batteries [J].
An, Yongling ;
Tian, Yuan ;
Liu, Chengkai ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
ACS NANO, 2021, 15 (09) :15259-15273
[2]   Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries [J].
Cai, Zhao ;
Ou, Yangtao ;
Wang, Jindi ;
Xiao, Run ;
Fu, Lin ;
Yuan, Zhu ;
Zhan, Renmin ;
Sun, Yongming .
ENERGY STORAGE MATERIALS, 2020, 27 :205-211
[3]  
Choi C M, 2023, Chem. Eng-., V436
[4]  
Deng NI J, 2022, Small, V18
[5]  
Fang X N, 2023, nanocrystals.J. Mater. Res., DOI [10.1557/s43578-023-01018-5, DOI 10.1557/S43578-023-01018-5]
[6]   Proton-Reservoir Hydrogel Electrolyte for Long-Term Cycling Zn/PANI Batteries in Wide Temperature Range [J].
Feng, Doudou ;
Jiao, Yucong ;
Wu, Peiyi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (01)
[7]   Giant thermopower of ionic gelatin near room temperature [J].
Han, Cheng-Gong ;
Qian, Xin ;
Li, Qikai ;
Deng, Biao ;
Zhu, Yongbin ;
Han, Zhijia ;
Zhang, Wenqing ;
Wang, Weichao ;
Feng, Shien-Ping ;
Chen, Gang ;
Liu, Weishu .
SCIENCE, 2020, 368 (6495) :1091-+
[8]   A Corrosion-Resistant and Dendrite-Free Zinc Metal Anode in Aqueous Systems [J].
Han, Daliang ;
Wu, Shichao ;
Zhang, Siwei ;
Deng, Yaqian ;
Cui, Changjun ;
Zhang, Lina ;
Long, Yu ;
Li, Huan ;
Tao, Ying ;
Weng, Zhe ;
Yang, Quan-Hong ;
Kang, Feiyu .
SMALL, 2020, 16 (29)
[9]   Electrolyte Modulation Strategies for Rechargeable Zn Batteries [J].
Han Ming-Ming ;
Huang Ji-Wu ;
Wu Xian-Wen ;
Liang Shu-Quan ;
Zhou Jiang .
CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2022, 38 (08) :1451-1469
[10]   An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries [J].
Hao, Junnan ;
Li, Bo ;
Li, Xiaolong ;
Zeng, Xiaohui ;
Zhang, Shilin ;
Yang, Fuhua ;
Liu, Sailin ;
Li, Dan ;
Wu, Chao ;
Guo, Zaiping .
ADVANCED MATERIALS, 2020, 32 (34)