Water table level controls methanogenic and methanotrophic communities and methane emissions in a Sphagnum-dominated peatland

被引:9
作者
Tian, Wen [1 ,2 ,3 ]
Wang, Hongmei [1 ]
Xiang, Xing [1 ,4 ]
Loni, Prakash C. [1 ]
Qiu, Xuan [1 ]
Wang, Ruicheng [1 ]
Huang, Xianyu [3 ]
Tuovinen, Olli H. [5 ]
机构
[1] China Univ Geosci, State Key Lab Biogeol & Environm Geol, Wuhan, Peoples R China
[2] Anhui Sci & Technol Univ, Coll Resource & Environm, Chuzhou, Peoples R China
[3] China Univ Geosci, Hubei Key Lab Crit Zone Evolut, Wuhan, Peoples R China
[4] Shangrao Normal Univ, Coll Life Sci, Shangrao, Peoples R China
[5] Ohio State Univ, Dept Microbiol, Columbus, OH USA
基金
中国国家自然科学基金;
关键词
water table level; methanogens; methanotrophs; methane production; methane oxidation; methane fluxes; MICROBIAL COMMUNITY; ENVIRONMENTAL DRIVERS; OXIDATION; CARBON; VEGETATION; DYNAMICS; BACTERIA; TERM; FEN; SENSITIVITY;
D O I
10.1128/spectrum.01992-23
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Peatlands are important sources of the greenhouse gas methane emissions equipoised by methanogens and methanotrophs. However, knowledge about how microbial functional groups associated with methane production and oxidation respond to water table fluctuations has been limited to date. Here, methane-related microbial communities and the potentials of methane production and oxidation were determined along sectioned peat layers in a subalpine peatland across four Sphagnum-dominated sites with different water table levels. Methane fluxes were also monitored at these sites. The results showed that mcrA gene copies for methanogens were the highest in the 10- to 15-cm peat layer, which was also characterized by the maximum potential methane production (24.53 +/- 1.83 nmol/g/h). Copy numbers of the pmoA gene for type Ia and Ib methanotrophs were enriched in the 0-5 cm peat layer with the highest potential methane oxidation (43.09 +/- 3.44 nmol/g/h). For the type II methanotrophs, the pmoA gene copies were higher in the 10- to 15-cm peat layer. Hydrogenotrophic methanogens and type II methanotrophs dominated the methane functional groups. Deterministic process contributed more to methanogenic and methanotrophic community assemblages in comparison with stochastic process. The level of water table significantly shaped methanogenic and methanotrophic community structures and regulated methane fluxes. Compared with vascular plants, Sphagnum mosses significantly reduced the methane emissions in peatlands. Collectively, these findings enhance a comprehensive understanding of the effect of the water table level on methane functional groups, with consequential implications for reducing methane emissions within peatland ecosystems. IMPORTANCE The water table level is recognized as a critical factor in regulating methane emissions, which are largely dependent on the balance of methanogens and methanotrophs. Previous studies on peat methane emissions have been mostly focused on spatial-temporal variations and the relationship with meteorological conditions. However, the role of the water table level in methane emissions remains unknown. In this work, four representative microhabitats along a water table gradient in a Sphagnum-dominated peatland were sampled to gain an insight into methane functional communities and methane emissions as affected by the water table level. The changes in methane-related microbial community structure and assembly were used to characterize the response to the water table level. This study improves the understanding of the changes in methane-related microbial communities and methane emissions with water table levels in peatlands.
引用
收藏
页数:19
相关论文
共 82 条
[1]   Microbial communities in natural and disturbed peatlands: A review [J].
Andersen, R. ;
Chapman, S. J. ;
Artz, R. R. E. .
SOIL BIOLOGY & BIOCHEMISTRY, 2013, 57 :979-994
[2]   Manganese- and Iron-Dependent Marine Methane Oxidation [J].
Beal, Emily J. ;
House, Christopher H. ;
Orphan, Victoria J. .
SCIENCE, 2009, 325 (5937) :184-187
[3]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[4]   Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils [J].
Bourne, DG ;
McDonald, IR ;
Murrell, JC .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (09) :3802-3809
[5]   Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils [J].
Cai, Yuanfeng ;
Zheng, Yan ;
Bodelier, Paul L. E. ;
Conrad, Ralf ;
Jia, Zhongjun .
NATURE COMMUNICATIONS, 2016, 7
[6]   Methanotrophic and Methanogenic Communities in Swiss Alpine Fens Dominated by Carex rostrata and Eriophorum angustifolium [J].
Cheema, Simrita ;
Zeyer, Josef ;
Henneberger, Ruth .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2015, 81 (17) :5832-5844
[7]   Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons [J].
Chen, Weidong ;
Ren, Kexin ;
Isabwe, Alain ;
Chen, Huihuang ;
Liu, Min ;
Yang, Jun .
MICROBIOME, 2019, 7 (01)
[8]   Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7-m deep raised peat bog [J].
Clymo, R. S. ;
Bryant, C. L. .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2008, 72 (08) :2048-2066
[9]   Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline [J].
Daffonchio, D ;
Borin, S ;
Brusa, T ;
Brusetti, L ;
van der Wielen, PWJJ ;
Bolhuis, H ;
Yakimov, MM ;
D'Auria, G ;
Giuliano, L ;
Marty, D ;
Tamburini, C ;
McGenity, TJ ;
Hallsworth, JE ;
Sass, AM ;
Timmis, KN ;
Tselepides, A ;
de Lange, GJ ;
Hübner, A ;
Thomson, J ;
Varnavas, SP ;
Gasparoni, F ;
Gerber, HW ;
Malinverno, E ;
Corselli, C ;
Garcin, J ;
McKew, B ;
Golyshin, PN ;
Lampadariou, N ;
Polymenakou, P ;
Calore, D ;
Cenedese, S ;
Zanon, F ;
Hoog, S .
NATURE, 2006, 440 (7081) :203-207
[10]   Methane Feedbacks to the Global Climate System in a Warmer World [J].
Dean, Joshua F. ;
Middelburg, Jack J. ;
Rockmann, Thomas ;
Aerts, Rien ;
Blauw, Luke G. ;
Egger, Matthias ;
Jetten, Mike S. M. ;
de Jong, Anniek E. E. ;
Meisel, Ove H. ;
Rasigraf, Olivia ;
Slomp, Caroline P. ;
in't Zandt, Michiel H. ;
Dolman, A. J. .
REVIEWS OF GEOPHYSICS, 2018, 56 (01) :207-250