Boosting the photodetection of bulk aluminum nitride crystals-based MSM device through an additional electrode

被引:6
作者
Cao, Yuan [1 ]
Fan, Zelong [1 ]
Qin, Zuoyan [1 ]
Jin, Lei [1 ]
Li, Baikui [1 ]
Sun, Zhenhua [1 ]
Wu, Honglei [1 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Aluminum nitride - Chemical stability - III-V semiconductors - Photodetectors - Photons - Wide band gap semiconductors;
D O I
10.1063/5.0173327
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Aluminum nitride (AlN) exhibits excellent high-temperature resistance, chemical stability, and a wide bandgap, making it a prime candidate material for deep ultraviolet detectors. In this study, a modified metal-semiconductor-metal (MSM) photodetector using titanium (Ti) electrodes and millimeter-scale AlN bulk polycrystals grown through physical vapor transport is developed, demonstrating photoresponse to light from visible to vacuum ultraviolet. An additional tungsten (W) electrode is designed on the backside of the device, transforming it into a W-MSM device. A proper bias to the W electrode (V-W) is found valid to boost the performance of the photodetector. Representatively, with a V of 20 V and V-W of -12 V applied, the device achieves improvements in responsivity (R), detectivity (D*), and external quantum efficiency of 112.84%, 30.5%, and 112.84%, respectively, to 532 nm light and 123.18%, 36.84%, and 123.18%, respectively, to 193 nm light. Furthermore, it is found that with the total voltage being instant, optimizing the distribution of voltage between the Ti electrode and the W electrode would induce a better photoresponse than applying voltage solely to the Ti electrode (V-W = 0 V). The reason is elaborated through modeling the voltage distribution in the device, revealing the particular role of the bulk semiconductor in this feature. This research provides a facile and innovative approach to developing low-power photodetectors for bulk materials.(c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license(http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:8
相关论文
共 24 条
[1]   ε-Ga2O3: An Emerging Wide Bandgap Piezoelectric Semiconductor for Application in Radio Frequency Resonators [J].
Chen, Zimin ;
Lu, Xing ;
Tu, Yujia ;
Chen, Weiqu ;
Zhang, Zhipeng ;
Cheng, Shengliang ;
Chen, Shujian ;
Luo, Hongtai ;
He, Zhiyuan ;
Pei, Yanli ;
Wang, Gang .
ADVANCED SCIENCE, 2022, 9 (32)
[2]   Phonon dispersion and Raman scattering in hexagonal GaN and AlN [J].
Davydov, VY ;
Kitaev, YE ;
Goncharuk, IN ;
Smirnov, AN ;
Graul, J ;
Semchinova, O ;
Uffmann, D ;
Smirnov, MB ;
Mirgorodsky, AP ;
Evarestov, RA .
PHYSICAL REVIEW B, 1998, 58 (19) :12899-12907
[3]   Aluminum nitride crystal-based photodetector with bias polarity-dependent spectral selectivity [J].
Fan, Zelong ;
Qin, Zuoyan ;
Jin, Lei ;
Cao, Yuan ;
Yue, Zhongyu ;
Li, Baikui ;
Wu, Honglei ;
Sun, Zhenhua .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2023, 41 (01)
[4]   Extremely High Photovoltage (3.16 V) Achieved in Vacuum-Ultraviolet-Oriented van der Waals Photovoltaics [J].
Jia, Lemin ;
Li, Titao ;
Huang, Feng ;
Zheng, Wei .
ACS PHOTONICS, 2022, 9 (06) :2101-2108
[5]   Piezoelectric Sensors Operating at Very High Temperatures and in Extreme Environments Made of Flexible Ultrawide-Bandgap Single-Crystalline AlN Thin Films [J].
Kim, Nam-In ;
Yarali, Miad ;
Moradnia, Mina ;
Aqib, Muhammad ;
Liao, Che-Hao ;
AlQatari, Feras ;
Nong, Mingtao ;
Li, Xiaohang ;
Ryou, Jae-Hyun .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (10)
[6]   3D-MSM AlN Deep Ultraviolet Detector [J].
Li, Tao ;
Song, Wenqing ;
Wan, Rongqiao ;
Zhang, Lei ;
Yan, Jianchang ;
Zhu, Wenhui ;
Wang, Liancheng .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2021, 57 (03)
[7]   Three-dimensional metal-semiconductor-metal AlN deep-ultraviolet detector [J].
Li, Tao ;
Long, Linyun ;
Hu, Zelin ;
Wan, Rongqiao ;
Gong, Xiaoliang ;
Zhang, Lei ;
Yuan, Yongbo ;
Yan, Jianchang ;
Zhu, Wenhui ;
Wang, Liancheng ;
Li, Jinmin .
OPTICS LETTERS, 2020, 45 (12) :3325-3328
[8]   In-plane enhanced epitaxy for step-flow AlN yielding a high-performance vacuum-ultraviolet photovoltaic detector [J].
Li, Titao ;
Wang, Fei ;
Lin, Richeng ;
Xie, Wentao ;
Li, Yuqiang ;
Zheng, Wei ;
Huang, Feng .
CRYSTENGCOMM, 2020, 22 (04) :654-659
[9]   High responsivity and flexible deep-UV phototransistor based on Ta-doped β-Ga2O3 [J].
Li, Xiao-Xi ;
Zeng, Guang ;
Li, Yu-Chun ;
Zhang, Hao ;
Ji, Zhi-Gang ;
Yang, Ying-Guo ;
Luo, Man ;
Hu, Wei-Da ;
Zhang, David Wei ;
Lu, Hong-Liang .
NPJ FLEXIBLE ELECTRONICS, 2022, 6 (01)
[10]   Ultrafast (600 ps) α-ray scintillators [J].
Lin, Richeng ;
Zhu, Yanming ;
Chen, Liang ;
Zheng, Wei ;
Xu, Mengxuan ;
Ruan, Jinlu ;
Li, Renfu ;
Li, Titao ;
Lin, Zhuogeng ;
Cheng, Lu ;
Ding, Ying ;
Huang, Feng ;
Ouyang, Xiaoping .
PHOTONIX, 2022, 3 (01)