Circ_0059662 exerts a positive role in oxygen-glucose deprivation/reoxygenation-induced SK-N-SH cell injury

被引:0
|
作者
An, Yang [1 ]
Xu, Dan [1 ]
Yuan, Lei [1 ]
Wen, Ying [1 ]
机构
[1] Nanjing Univ Chinese Med, Dept Neurol, Taicang TCM Hosp, 140 Renmin South Rd, Taicang 215400, Jiangsu, Peoples R China
关键词
Ischemic stroke; circ_0059662; OGD/R; miR-579-3p; ETS1; PROTOONCOGENE; EXPRESSION;
D O I
10.1007/s00221-023-06714-6
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Circular RNA (circRNA) is identified as a potential regulator of ischemic stroke (IS) progression. Through GEO database screening, it was found that circ_0059662 was highly expressed in acute IS patients. However, whether circ_0059662 participated in the IS process has not been studied. Oxygen-glucose deprivation/reoxygenation (OGD/R)-induced SK-N-SH cells were established to mimic IS cell models. The expression of circ_0059662, miR-579-3p, and ETS proto-oncogene 1 (ETS1) was measured via quantitative real-time PCR. Cell counting kit 8 assay, EdU assay and flow cytometry were utilized to detect cell proliferation and apoptosis. Western blot was employed to measure protein expression. ELISA was used to detect the levels of inflammation factors, and oxidative stress was determined by assessing SOD activity and MDA level. The relationship between miR-579-3p and circ_0059662 or ETS1 was examined via dual-luciferase reporter assay, RNA pull-down assay and RIP assay. Circ_0059662 was a circular RNA with highly expression in OGD/R-induced SK-N-SH cells. In OGD/R-induced cell injury, circ_0059662 knockdown promoted cell proliferation, and inhibited cell apoptosis, inflammation and oxidative stress. Circ_0059662 served as miR-579-3p sponge to positively regulate ETS1 expression. MiR-579-3p inhibitor and ETS1 overexpression could reverse the inhibition effect of circ_0059662 knockdown on OGD/R-induced cell injury. Besides, MiR-579-3p also could relieve OGD/R-induced SK-N-SH cell apoptosis, inflammation and oxidative stress by targeting ETS1. Our findings indicated that circ_0059662 knockdown alleviated OGD/R-induced SK-N-SH cell injury by sponging miR-579-3p to regulate ETS1 expression.
引用
收藏
页码:2705 / 2714
页数:10
相关论文
共 50 条
  • [21] Sestrin1 exerts a cytoprotective role against oxygen-glucose deprivation/reoxygenation-induced neuronal injury by potentiating Nrf2 activation via the modulation of Keap1
    Yang, Fang
    Chen, Ruping
    BRAIN RESEARCH, 2021, 1750
  • [22] Obacuone improves oxygen-glucose deprivation/reoxygenation-induced H9c2 cell damage by inhibiting ferroptosis
    Gao, Ling
    Chen, Jianhai
    MOLECULAR & CELLULAR TOXICOLOGY, 2025,
  • [23] DIXDC1 prevents oxygen-glucose deprivation/reoxygenation-induced injury in hippocampal neurons in vitro by promoting Wnt/β-catenin signaling
    Li, T.
    Wan, Y-C
    Sun, L-J
    Tao, S-J
    Chen, P.
    Liu, C-H
    Wang, K.
    Zhou, C-Y
    Zhao, G-Q
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2018, 22 (17) : 5678 - 5687
  • [24] Sodium Tanshinone IIA Sulfonate Ameliorates Oxygen-glucose Deprivation/Reoxygenation-induced Neuronal Injury via Protection of Mitochondria and Promotion of Autophagy
    Zhi Ma
    Yue Wu
    Juan Xu
    Hui Cao
    Mingyang Du
    Haibo Jiang
    Feng Qiu
    Neurochemical Research, 2023, 48 : 3378 - 3390
  • [25] Sodium Tanshinone IIA Sulfonate Ameliorates Oxygen-glucose Deprivation/Reoxygenation-induced Neuronal Injury via Protection of Mitochondria and Promotion of Autophagy
    Ma, Zhi
    Wu, Yue
    Xu, Juan
    Cao, Hui
    Du, Mingyang
    Jiang, Haibo
    Qiu, Feng
    NEUROCHEMICAL RESEARCH, 2023, 48 (11) : 3378 - 3390
  • [26] CIIA negatively regulates neuronal cell death induced by oxygen-glucose deprivation and reoxygenation
    Hwang, Sang Gil
    Shim, Jaekyung
    Choi, Eui-Ju
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2014, 397 (1-2) : 139 - 146
  • [27] Protective effects of dehydrocostuslactone on rat hippocampal slice injury induced by oxygen-glucose deprivation/reoxygenation
    Zhao, Qipeng
    Chen, Ailing
    Wang, Xiaobo
    Zhang, Zhuanzhuan
    Zhao, Yunsheng
    Huang, Yu
    Ren, Shuanglai
    Zhu, Yafei
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2018, 42 (02) : 1190 - 1198
  • [28] microRNA-186 alleviates oxygen-glucose deprivation/reoxygenation-induced injury by directly targeting hypoxia-inducible factor-1α
    Li, Shengnan
    Wang, Yajun
    Wang, Mengxu
    Chen, Linfa
    Chen, Shaofeng
    Deng, Fu
    Zhu, Peiyi
    Hu, Weidong
    Chen, Xinglan
    Zhao, Bin
    Ma, Guoda
    Li, You
    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, 2021, 35 (06) : 1 - 11
  • [29] Harpagide from Scrophularia protects rat cortical neurons from oxygen-glucose deprivation and reoxygenation-induced injury by decreasing endoplasmic reticulum stress
    Wang, Ke
    Lou, Yeliang
    Xu, Huang
    Zhong, Xiaoming
    Huang, Zhen
    JOURNAL OF ETHNOPHARMACOLOGY, 2020, 253
  • [30] Autophagy Inhibition by ATG3 Knockdown Remits Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury and Inflammation in Brain Microvascular Endothelial Cells
    Peng, Zhaolong
    Ji, Daofei
    Qiao, Lukuan
    Chen, Yuedong
    Huang, Hongjuan
    NEUROCHEMICAL RESEARCH, 2021, 46 (12) : 3200 - 3212