A review on client selection models in federated learning

被引:2
|
作者
Panigrahi, Monalisa [1 ]
Bharti, Sourabh [2 ]
Sharma, Arun [1 ]
机构
[1] Indira Gandhi Delhi Tech Univ Women, Dept Informat Technol, Delhi, India
[2] Munster Technol Univ, Nimbus Res Ctr, Cork, Ireland
关键词
client selection; collaborative learning; distributed machine learning; federated learning; machine learning; OPTIMIZATION; NETWORKS;
D O I
10.1002/widm.1514
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning (FL) is a decentralized machine learning (ML) technique that enables multiple clients to collaboratively train a common ML model without them having to share their raw data with each other. A typical FL process involves (1) FL client(s) selection, (2) global model distribution, (3) local training, and (4) aggregation. As such FL clients are heterogeneous edge devices (i.e., mobile phones) that differ in terms of computational resources, training data quality, and distribution. Therefore, FL client(s) selection has a significant influence on the execution of the remaining steps of an FL process. There have been a variety of FL client(s) selection models proposed in the literature, however, their critical review and/or comparative analysis is much less discussed. This paper brings the scattered FL client(s) selection models onto a single platform by first categorizing them into five categories, followed by providing a detailed analysis of the benefits/shortcomings and the applicability of these models for different FL scenarios. Such understanding can help researchers in academia and industry to develop improved FL client(s) selection models to address the requirement challenges and shortcomings of the current models. Finally, future research directions in the area of FL client(s) selection are also discussed.This article is categorized under:Technologies > Machine LearningTechnologies > Artificial Intelligence
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Client Selection for Federated Learning With Label Noise
    Yang, Miao
    Qian, Hua
    Wang, Ximin
    Zhou, Yong
    Zhu, Honghin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 2193 - 2197
  • [32] FedDCS: Federated Learning Framework based on Dynamic Client Selection
    Zou, Shutong
    Xiao, Mingjun
    Xu, Yin
    An, Baoyi
    Zheng, Jun
    2021 IEEE 18TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2021), 2021, : 627 - 632
  • [33] FedECS: Client Selection for Optimizing Computing Energy in Federated Learning
    Han, Shuo
    Zhang, Chenyu
    Wang, Luhan
    Zheng, Wei
    Wen, Xiangming
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [34] Adaptive client selection and model aggregation for heterogeneous federated learning
    Zhai, Rui
    Jin, Haozhe
    Gong, Wei
    Lu, Ke
    Liu, Yanhong
    Song, Yalin
    Yu, Junyang
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [35] Federated learning client selection algorithm based on gradient similarity
    Hu, Lingxi
    Hu, Yuanyuan
    Jiang, Linhua
    Long, Wei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):
  • [36] Adaptive client selection with personalization for communication efficient Federated Learning
    de Souza, Allan M.
    Maciel, Filipe
    da Costa, Joahannes B. D.
    Bittencourt, Luiz F.
    Cerqueira, Eduardo
    Loureiro, Antonio A. F.
    Villas, Leandro A.
    AD HOC NETWORKS, 2024, 157
  • [37] Client Selection Mechanism for Federated Learning Based on Class Imbalance
    Zhang, Linlin
    Lin, Congjie
    Bie, Zhangshuai
    Li, Shuo
    Bi, Xuehua
    Zhao, Kai
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT 1, 2025, 15031 : 266 - 278
  • [38] Federated Learning with Personalized Differential Privacy Combining Client Selection
    Xie, Yunting
    Zhang, Lan
    2022 8TH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING AND COMMUNICATIONS, BIGCOM, 2022, : 79 - 87
  • [39] Towards Instant Clustering Approach for Federated Learning Client Selection
    Arisdakessian, Sarhad
    Wahab, Omar Abdel
    Mourad, Azzam
    Otrok, Hadi
    2023 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2023, : 409 - 413
  • [40] FedBoost: Bayesian Estimation Based Client Selection for Federated Learning
    Sheng, Yuhang
    Zeng, Lingguo
    Cao, Shuqin
    Dai, Qing
    Yang, Shasha
    Lu, Jianfeng
    IEEE ACCESS, 2024, 12 : 52255 - 52266