共 159 条
[1]
Adversarial Example Detection Using Latent Neighborhood Graph
[J].
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021),
2021,
:7667-7676
[2]
Agarwal C, 2019, IEEE IMAGE PROC, P3801, DOI [10.1109/icip.2019.8803601, 10.1109/ICIP.2019.8803601]
[3]
Defense against Universal Adversarial Perturbations
[J].
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR),
2018,
:3389-3398
[4]
Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
[J].
IEEE ACCESS,
2018, 6
:14410-14430
[5]
Athalye A, 2018, PR MACH LEARN RES, V80
[6]
Awasthi P, 2021, Arxiv, DOI arXiv:2104.09658
[7]
Ba JL, 2016, arXiv
[8]
Bai Y, 2022, Arxiv, DOI [arXiv:2103.08307, DOI 10.48550/ARXIV.2103.08307]
[9]
Bartlett Peter L., 2021, ARXIV
[10]
Batch Normalization Increases Adversarial Vulnerability and Decreases Adversarial Transferability: A Non-Robust Feature Perspective
[J].
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021),
2021,
:7798-7807