Integrative Single-Cell and Bulk Transcriptomes Analyses Identify Intrinsic HNSCC Subtypes with Distinct Prognoses and Therapeutic Vulnerabilities

被引:14
作者
Dai, Yibin [1 ,2 ]
Wang, Ziyu [1 ,2 ]
Xia, Yingchao [1 ]
Li, Jin [2 ]
Wu, Yaping [2 ]
Wang, Yanling [3 ]
Jiang, Hongbing [1 ]
Cheng, Jie [1 ,2 ]
机构
[1] Nanjing Med Univ, Affiliated Stomatol Hosp, Dept Oral & Maxillofacial Surg, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Med Univ, Jiangsu Key Lab Oral Dis, Nanjing, Jiangsu, Peoples R China
[3] Nanjing Med Univ, Jiangsu Prov Engn Res Ctr Stomatol Translat Med, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
CANCER; HEAD; HETEROGENEITY; SENSITIVITY; DISCOVERY; CARCINOMA; BIOLOGY;
D O I
10.1158/1078-0432.CCR-22-3563
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
◥ ABSTRACT Purpose: Tumor heterogeneity in head and neck squamous cell carcinoma (HNSCC) profoundly compromises patient stratifi- cation, personalized treatment planning, and prognostic predic-tion, which underscores the urgent need for more effective molecular subtyping for this malignancy. Here, we sought to define the intrinsic epithelial subtypes for HNSCC by integrative analyses of single-cell and bulk RNA sequencing datasets from multiple cohorts and assess their molecular features and clinical significance. Experimental Design: Malignant epithelial cells were identified from single-cell RNA sequencing (scRNA-seq) datasets and sub -typed on the basis of differentially expressed genes. Subtype-specific genomic/epigenetic abnormalities, molecular signaling, genetic regulatory network, immune landscape, and patient survival were characterized. Therapeutic vulnerabilities were further predicted on the basis of drug sensitivity datasets from cell lines, patient-derived xenograft models, and real-world clinical outcomes. Novel signa-tures for prognostication and therapeutic prediction were devel-oped by machine learning and independently validated.Results: Three intrinsic consensus molecular subtypes (iCMS1-3) for HNSCC were proposed from scRNA-seq analyses and recapitulated in 1,325 patients from independent cohorts using bulk-sequencing datasets. iCMS1 was characterized by EGFR amplification/activation, stromal-enriched environment, epithelial-to-mesenchymal transition, worst survival, and sensi-tivities to EGFR inhibitor. iCMS2 was featured by human pap-illomavirus-positive oropharyngeal predilection, immune-hot, susceptibilities to anti-PD-1, and best prognosis. Moreover, iCMS3 displayed immune-desert and sensitivities to 5-FU and MEK, STAT3 inhibitors. Three novel, robust signatures derived from iCMS subtype-specific transcriptomics features were devel-oped by machine learning for patient prognostication and cetux-imab and anti-PD-1 response predictions. Conclusions: These findings reiterate molecular heterogeneity of HNSCC and advantages of scRNA-seq in pinpointing cellular diversities in complex cancer ecosystems. Our HNSCC iCMS regime might facilitate accurate patient stratification and individ-ualized precise treatment.
引用
收藏
页码:2845 / 2858
页数:14
相关论文
共 58 条
[1]  
Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/NMETH.4463, 10.1038/nmeth.4463]
[2]   Clinical application of advanced multi-omics tumor profiling: Shaping precision oncology of the future [J].
Akhoundova, Dilara ;
Rubin, Mark A. .
CANCER CELL, 2022, 40 (09) :920-938
[3]   xCell: digitally portraying the tissue cellular heterogeneity landscape [J].
Aran, Dvir ;
Hu, Zicheng ;
Butte, Atul J. .
GENOME BIOLOGY, 2017, 18
[4]   Conserved pan-cancer microenvironment subtypes predict response to immunotherapy [J].
Bagaev, Alexander ;
Kotlov, Nikita ;
Nomie, Krystle ;
Svekolkin, Viktor ;
Gafurov, Azamat ;
Isaeva, Olga ;
Osokin, Nikita ;
Kozlov, Ivan ;
Frenkel, Felix ;
Gancharova, Olga ;
Almog, Nava ;
Tsiper, Maria ;
Ataullakhanov, Ravshan ;
Fowler, Nathan .
CANCER CELL, 2021, 39 (06) :845-+
[5]   Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment [J].
Barkley, Dalia ;
Moncada, Reuben ;
Pour, Maayan ;
Liberman, Deborah A. ;
Dryg, Ian ;
Werba, Gregor ;
Wang, Wei ;
Baron, Maayan ;
Rao, Anjali ;
Xia, Bo ;
Franca, Gustavo S. ;
Weil, Alejandro ;
Delair, Deborah F. ;
Hajdu, Cristina ;
Lund, Amanda W. ;
Osman, Iman ;
Yanai, Itai .
NATURE GENETICS, 2022, 54 (08) :1192-+
[6]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[7]   Unravelling biology and shifting paradigms in cancer with single-cell sequencing [J].
Baslan, Timour ;
Hicks, James .
NATURE REVIEWS CANCER, 2017, 17 (09) :557-569
[8]   Caveolin-1 and Sox-2 are predictive biomarkers of cetuximab response in head and neck cancer [J].
Bouhaddou, Mehdi ;
Lee, Rex H. ;
Li, Hua ;
Bhola, Neil E. ;
O'Keefe, Rachel A. ;
Naser, Mohammad ;
Zhu, Tian Ran ;
Nwachuku, Kelechi ;
Duvvuri, Umamaheswar ;
Olshen, Adam B. ;
Roy, Ritu ;
Hechmer, Aaron ;
Bolen, Jennifer ;
Keysar, Stephen B. ;
Jimeno, Antonio ;
Mills, Gordon B. ;
Vandenberg, Scott ;
Swaney, Danielle L. ;
Johnson, Daniel E. ;
Krogan, Nevan J. ;
Grandis, Jennifer R. .
JCI INSIGHT, 2021, 6 (20)
[9]   NicheNet: modeling intercellular communication by linking ligands to target genes [J].
Browaeys, Robin ;
Saelens, Wouter ;
Saeys, Yvan .
NATURE METHODS, 2020, 17 (02) :159-+
[10]  
Cancer Genome Atlas Network, 2015, NATURE, V517, P576, DOI [DOI 10.1038/NATURE14129, 10.1038/nature14129]