Neurocognitive basis of model-based decision making and its metacontrol in childhood

被引:1
作者
Smid, C. R. [1 ]
Ganesan, K. [1 ]
Thompson, A. [1 ]
Canigueral, R. [1 ]
Veselic, S. [2 ,3 ]
Royer, J. [4 ]
Kool, W. [5 ]
Hauser, T. U. [3 ,6 ]
Bernhardt, B. [4 ]
Steinbeis, N. [1 ]
机构
[1] UCL, Dept Psychol & Language Sci, London, England
[2] UCL, Dept Motor Neurosci, Clin & Movement Neurosci, London, England
[3] UCL, Wellcome Ctr Human Neuroimaging, London, England
[4] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr, Montreal, PQ, Canada
[5] Washington Univ, Dept Psychol & Brain Sci, St Louis, MO USA
[6] Max Planck Univ Coll London Ctr Computat Psychiat, Berlin, Germany
基金
欧洲研究理事会; 英国惠康基金; 欧盟地平线“2020”; 加拿大健康研究院; 英国经济与社会研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Model-based decision-making; Metacontrol; Childhood; Reinforcement learning; Cortical thickness; CORTICAL THICKNESS; INDIVIDUAL-DIFFERENCES; ENTORHINAL CORTEX; BRAIN-DEVELOPMENT; DEVELOPMENTAL TRAJECTORIES; PARIETAL CORTEX; POWER ANALYSIS; SURFACE-AREA; PREDICTS; CHILDREN;
D O I
10.1016/j.dcn.2023.101269
中图分类号
B844 [发展心理学(人类心理学)];
学科分类号
040202 ;
摘要
Human behavior is supported by both goal-directed (model-based) and habitual (model-free) decision-making, each differing in its flexibility, accuracy, and computational cost. The arbitration between habitual and goaldirected systems is thought to be regulated by a process known as metacontrol. However, how these systems emerge and develop remains poorly understood. Recently, we found that while children between 5 and 11 years displayed robust signatures of model-based decision-making, which increased during this developmental period, there were substantial individual differences in the display of metacontrol. Here, we inspect the neurocognitive basis of model-based decision-making and metacontrol in childhood and focus this investigation on executive functions, fluid reasoning, and brain structure. A total of 69 participants between the ages of 6-13 completed a two-step decision-making task and an extensive behavioral test battery. A subset of 44 participants also completed a structural magnetic resonance imaging scan. We find that individual differences in metacontrol are specifically associated with performance on an inhibition task and individual differences in thickness of dorsolateral prefrontal, temporal, and superior-parietal cortices. These brain regions likely reflect the involvement of cognitive processes crucial to metacontrol, such as cognitive control and contextual processing.
引用
收藏
页数:13
相关论文
共 96 条
[1]   The parahippocampal cortex mediates spatial and nonspatial associations [J].
Aminoff, E. ;
Gronau, N. ;
Bar, M. .
CEREBRAL CORTEX, 2007, 17 (07) :1493-1503
[2]   Separate encoding of model-based and model-free valuations in the human brain [J].
Beierholm, Ulrik R. ;
Anen, Cedric ;
Quartz, Steven ;
Bossaerts, Peter .
NEUROIMAGE, 2011, 58 (03) :955-962
[3]   Structural Covariance Networks of the Dorsal Anterior Insula Predict Females' Individual Differences in Empathic Responding [J].
Bernhardt, Boris C. ;
Klimecki, Olga M. ;
Leiberg, Susanne ;
Singer, Tania .
CEREBRAL CORTEX, 2014, 24 (08) :2189-2198
[4]   Medial prefrontal and anterior cingulate cortical thickness predicts, shared individual differences in self-generated thought and temporal discounting [J].
Bernhardt, Boris C. ;
Smallwood, Jonathan ;
Tusche, Anita ;
Ruby, Florence J. M. ;
Engen, Haakon G. ;
Steinbeis, Nikolaus ;
Singer, Tania .
NEUROIMAGE, 2014, 90 :290-297
[5]   Brain charts for the human lifespan [J].
Bethlehem, R. A. I. ;
Seidlitz, J. ;
White, S. R. ;
Vogel, J. W. ;
Anderson, K. M. ;
Adamson, C. ;
Adler, S. ;
Alexopoulos, G. S. ;
Anagnostou, E. ;
Areces-Gonzalez, A. ;
Astle, D. E. ;
Auyeung, B. ;
Ayub, M. ;
Bae, J. ;
Ball, G. ;
Baron-Cohen, S. ;
Beare, R. ;
Bedford, S. A. ;
Benegal, V. ;
Beyer, F. ;
Blangero, J. ;
Blesa Cabez, M. ;
Boardman, J. P. ;
Borzage, M. ;
Bosch-Bayard, J. F. ;
Bourke, N. ;
Calhoun, V. D. ;
Chakravarty, M. M. ;
Chen, C. ;
Chertavian, C. ;
Chetelat, G. ;
Chong, Y. S. ;
Cole, J. H. ;
Corvin, A. ;
Costantino, M. ;
Courchesne, E. ;
Crivello, F. ;
Cropley, V. L. ;
Crosbie, J. ;
Crossley, N. ;
Delarue, M. ;
Delorme, R. ;
Desrivieres, S. ;
Devenyi, G. A. ;
Di Biase, M. A. ;
Dolan, R. ;
Donald, K. A. ;
Donohoe, G. ;
Dunlop, K. ;
Edwards, A. D. .
NATURE, 2022, 604 (7906) :525-+
[6]   Goal neglect and knowledge chunking in the construction of novel behaviour [J].
Bhandari, Apoorva ;
Duncan, John .
COGNITION, 2014, 130 (01) :11-30
[7]   Valence bias in metacontrol of decision making in adolescents and young adults [J].
Bolenz, Florian ;
Eppinger, Ben .
CHILD DEVELOPMENT, 2022, 93 (02) :E103-E116
[8]   Metacontrol of decision-making strategies in human aging [J].
Bolenz, Florian ;
Kool, Wouter ;
Reiter, Andrea M. F. ;
Eppinger, Ben .
ELIFE, 2019, 8
[9]   Deciding How To Decide: Self-Control and Meta-Decision Making [J].
Boureau, Y-Lan ;
Sokol-Hessner, Peter ;
Daw, Nathaniel D. .
TRENDS IN COGNITIVE SCIENCES, 2015, 19 (11) :700-710
[10]   Associations between cortical thickness and neurocognitive skills during childhood vary by family socioeconomic factors [J].
Brito, Natalie H. ;
Piccolo, Luciane R. ;
Noble, Kimberly G. .
BRAIN AND COGNITION, 2017, 116 :54-62