Almost all weak solutions of the weighted p(.)-biharmonic problem

被引:4
作者
Aydin, Ismail [1 ]
机构
[1] Sinop Univ, Dept Math, TR-57000 Sinop, Turkiye
关键词
Weighted p(.)-biharmonic operator; Poincare inequality; Variational methods; EXPONENT SOBOLEV SPACES; ELLIPTIC PROBLEM; EXISTENCE; MULTIPLICITY; EQUATIONS; SPECTRUM;
D O I
10.1007/s41478-023-00628-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new compact embedding theorem, and use an equivalent norm to obtain some different solutions of the weighted p(.)-biharmonic eigenvalue problem [GRAPHICS] Using Mountain Pass Theorem we show that the problem has a nontrivial weak solution. Moreover, we obtain infinite many pairs of solutions of the problem due to the Fountain Theorem.
引用
收藏
页码:171 / 190
页数:20
相关论文
共 44 条
[1]  
[Anonymous], 1996, Minimax theorems, DOI DOI 10.1007/978-1-4612-4146-1
[2]  
[Anonymous], 2001, Electron. J. Differential Equations
[3]   Existence and multiplicity of weak solutions for eigenvalue Robin problem with weighted p(.)-Laplacian [J].
Aydin, Ismail ;
Unal, Cihan .
RICERCHE DI MATEMATICA, 2023, 72 (02) :511-528
[4]   THREE SOLUTIONS TO A STEKLOV PROBLEM INVOLVING THE WEIGHTED p(.)-LAPLACIAN [J].
Aydin, Ismail ;
Unal, Cihan .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (01) :67-76
[5]   Weighted stochastic field exponent Sobolev spaces and nonlinear degenerated elliptic problem with nonstandard growth [J].
Aydin, Ismail ;
Unal, Cihan .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (04) :1383-1396
[6]   The Kolmogorov-Riesz theorem and some compactness criterions of bounded subsets in weighted variable exponent amalgam and Sobolev spaces [J].
Aydin, Ismail ;
Unal, Cihan .
COLLECTANEA MATHEMATICA, 2020, 71 (03) :349-367
[7]   Weighted Variable Sobolev Spaces and Capacity [J].
Aydin, Ismail .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
[8]   On the spectrum of a fourth order elliptic equation with variable exponent [J].
Ayoujil, A. ;
El Amrouss, A. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4916-4926
[9]  
Cavalheiro A. C., 2015, Elec. J. Math. Anal. App, V3, P215
[10]   EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR SOME DEGENERATE NONLINEAR ELLIPTIC EQUATIONS [J].
Cavalheiro, Albo Carlos .
ARCHIVUM MATHEMATICUM, 2014, 50 (01) :51-63