Evaluating mixed-integer programming models over multiple right-hand sides

被引:3
|
作者
Alfant, Rachael M. [1 ]
Ajayi, Temitayo [2 ]
Schaefer, Andrew J. [1 ]
机构
[1] Rice Univ, Dept Computat Appl Math & Operat Res, Houston, TX 77005 USA
[2] Nat Source Improved Plants, Ithaca, NY 14850 USA
关键词
Mixed-integer programming; Superadditive duality; Value function;
D O I
10.1016/j.orl.2023.05.004
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A critical measure of model quality for a mixed-integer program (MIP) is the difference, or gap, between its optimal objective value and that of its linear programming relaxation. In some cases, the right-hand side is not known exactly; however, there is no consensus metric for evaluating a MIP model when considering multiple right-hand sides. In this paper, we provide model formulations for the expectation and extrema of absolute and relative MIP gap functions over finite discrete sets. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:414 / 420
页数:7
相关论文
共 50 条
  • [41] MIXED-INTEGER PROGRAMMING FOR CYCLE DETECTION IN NONREVERSIBLE MARKOV PROCESSES
    Witzig, Jakob
    Beckenbach, Isabel
    Eifler, Leon
    Fackeldey, Konstantin
    Gleixner, Ambros
    Grever, Andreas
    Weber, Marcus
    MULTISCALE MODELING & SIMULATION, 2018, 16 (01) : 248 - 265
  • [42] OAMIP: Optimizing ANN Architectures Using Mixed-Integer Programming
    ElAraby, Mostafa
    Wolf, Guy
    Carvalho, Margarida
    INTEGRATION OF CONSTRAINT PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND OPERATIONS RESEARCH, CPAIOR 2023, 2023, 13884 : 219 - 237
  • [43] Computation of Systemic Risk Measures: A Mixed-Integer Programming Approach
    Ararat, Cagin
    Meimanjan, Nurtai
    OPERATIONS RESEARCH, 2023, 71 (06) : 2130 - 2145
  • [44] A novel mixed-integer programming approach for the aircraft landing problem
    Rogovs, Sergejs
    Nikitina, Viktoriya
    Gerdts, Matthias
    FRONTIERS IN FUTURE TRANSPORTATION, 2022, 3
  • [45] Strong Mixed-Integer Programming Formulations for Trained Neural Networks
    Anderson, Ross
    Huchette, Joey
    Tjandraatmadja, Christian
    Vielma, Juan Pablo
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2019, 2019, 11480 : 27 - 42
  • [46] A geometric way to build strong mixed-integer programming formulations
    Huchette, Joey
    Vielma, Juan Pablo
    OPERATIONS RESEARCH LETTERS, 2019, 47 (06) : 601 - 606
  • [47] Randomized Constraints Consensus for Distributed Robust Mixed-Integer Programming
    Chamanbaz, Mohammadreza
    Notarstefano, Giuseppe
    Sasso, Francesco
    Bouffanais, Roland
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2021, 8 (01): : 295 - 306
  • [48] Strong mixed-integer programming formulations for trained neural networks
    Ross Anderson
    Joey Huchette
    Will Ma
    Christian Tjandraatmadja
    Juan Pablo Vielma
    Mathematical Programming, 2020, 183 : 3 - 39
  • [49] A new mixed-integer programming model for spatial forest planning
    Gharbi, Chourouk
    Ronnqvist, Mikael
    Beaudoin, Daniel
    Carle, Marc-Andre
    CANADIAN JOURNAL OF FOREST RESEARCH, 2019, 49 (12) : 1493 - 1503
  • [50] Tightening Methods for Continuous-Time Mixed-Integer Programming Models for Chemical Production Scheduling
    Merchan, Andres F.
    Velez, Sara
    Maravelias, Christos T.
    AICHE JOURNAL, 2013, 59 (12) : 4461 - 4467