Gene regulatory network inference in the era of single-cell multi-omics

被引:107
|
作者
Badia-i-Mompel, Pau [1 ]
Wessels, Lorna [1 ,2 ]
Mueller-Dott, Sophia [1 ]
Trimbour, Remi [1 ,3 ]
Flores, Ricardo Ramirez O. [1 ]
Argelaguet, Ricard [4 ]
Saez-Rodriguez, Julio [1 ]
机构
[1] Heidelberg Univ, Heidelberg Univ Hosp, Inst Computat Biomed, Fac Med, Heidelberg, Germany
[2] MannHeim Heidelberg Univ, Med Fac, European Ctr Angiosci, Dept Vasc Biol & Tumor Angiogenesis, Mannheim, Germany
[3] Univ Paris Cite, Inst Pasteur, CNRS UMR 3738, Machine Learning Integrat Genom Grp, Paris, France
[4] Altos Labs, Granta Pk, Cambridge, England
关键词
PIONEER TRANSCRIPTION FACTORS; PAIRED EXPRESSION; OPEN CHROMATIN; DNA-BINDING; PROTEIN; RNA; ACCESSIBILITY; ELEMENTS; DATABASE; DISCOVERY;
D O I
10.1038/s41576-023-00618-5
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The interplay between chromatin, transcription factors and genes generates complex regulatory circuits that can be represented as gene regulatory networks (GRNs). The study of GRNs is useful to understand how cellular identity is established, maintained and disrupted in disease. GRNs can be inferred from experimental data - historically, bulk omics data - and/or from the literature. The advent of single-cell multi-omics technologies has led to the development of novel computational methods that leverage genomic, transcriptomic and chromatin accessibility information to infer GRNs at an unprecedented resolution. Here, we review the key principles of inferring GRNs that encompass transcription factor-gene interactions from transcriptomics and chromatin accessibility data. We focus on the comparison and classification of methods that use single-cell multimodal data. We highlight challenges in GRN inference, in particular with respect to benchmarking, and potential further developments using additional data modalities. Regulatory circuits of gene expression can be represented as gene regulatory networks (GRNs) that are useful to understand cellular identity and disease. Here, the authors review the computational methods used to infer GRNs - in particular from single-cell multi-omics data - as well as the biological insights that they can provide, and methods for their downstream analysis and experimental assessment.
引用
收藏
页码:739 / 754
页数:16
相关论文
共 50 条
  • [41] Single-cell multi-omics in the medicinal plant Catharanthusroseus
    Li, Chenxin
    Wood, Joshua C.
    Vu, Anh Hai
    Hamilton, John P.
    Lopez, Carlos Eduardo Rodriguez
    Payne, Richard M. E.
    Guerrero, Delia Ayled Serna
    Gase, Klaus
    Yamamoto, Kotaro
    Vaillancourt, Brieanne
    Caputi, Lorenzo
    O'Connor, Sarah E.
    Buell, C. Robin
    NATURE CHEMICAL BIOLOGY, 2023, 19 (08) : 1031 - +
  • [42] The technological landscape and applications of single-cell multi-omics
    Baysoy, Alev
    Bai, Zhiliang
    Satija, Rahul
    Fan, Rong
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2023, 24 (10) : 695 - 713
  • [43] The technological landscape and applications of single-cell multi-omics
    Alev Baysoy
    Zhiliang Bai
    Rahul Satija
    Rong Fan
    Nature Reviews Molecular Cell Biology, 2023, 24 : 695 - 713
  • [44] Clustering single-cell multi-omics data with MoClust
    Yuan, Musu
    Chen, Liang
    Deng, Minghua
    BIOINFORMATICS, 2023, 39 (01)
  • [45] How single-cell multi-omics builds relationships
    Vivien Marx
    Nature Methods, 2022, 19 : 142 - 146
  • [46] Intricacies of single-cell multi-omics data integration
    Rautenstrauch, Pia
    Vlot, Anna Hendrika Cornelia
    Saran, Sepideh
    Ohler, Uwe
    TRENDS IN GENETICS, 2022, 38 (02) : 128 - 139
  • [47] Applications of single-cell multi-omics in liver cancer
    Peeters, Frederik
    Cappuyns, Sarah
    Pique-Gili, Marta
    Phillips, Gino
    Verslype, Chris
    Lambrechts, Diether
    Dekervel, Jeroen
    JHEP REPORTS, 2024, 6 (07)
  • [48] scapGNN: A graph neural network-based framework for active pathway and gene module inference from single-cell multi-omics data
    Han, Xudong
    Wang, Bing
    Situ, Chenghao
    Qi, Yaling
    Zhu, Hui
    Li, Yan
    Guo, Xuejiang
    PLOS BIOLOGY, 2023, 21 (11)
  • [49] Single Cell Atlas: a single-cell multi-omics human cell encyclopedia
    Pan, Lu
    Parini, Paolo
    Tremmel, Roman
    Loscalzo, Joseph
    Lauschke, Volker
    Maron, Bradley
    Paci, Paola
    Ernberg, Ingemar
    Tan, Nguan Soon
    Liao, Zehuan
    Yin, Weiyao
    Rengarajan, Sundararaman
    Li, Xuexin
    GENOME BIOLOGY, 2024, 25 (01)
  • [50] Benchmarking copy number aberrations inference tools using single-cell multi-omics datasets
    Song, Minfang
    Ma, Shuai
    Wang, Gong
    Wang, Yukun
    Yang, Zhenzhen
    Xie, Bin
    Guo, Tongkun
    Huang, Xingxu
    Zhang, Liye
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (02)