Gene regulatory network inference in the era of single-cell multi-omics

被引:107
|
作者
Badia-i-Mompel, Pau [1 ]
Wessels, Lorna [1 ,2 ]
Mueller-Dott, Sophia [1 ]
Trimbour, Remi [1 ,3 ]
Flores, Ricardo Ramirez O. [1 ]
Argelaguet, Ricard [4 ]
Saez-Rodriguez, Julio [1 ]
机构
[1] Heidelberg Univ, Heidelberg Univ Hosp, Inst Computat Biomed, Fac Med, Heidelberg, Germany
[2] MannHeim Heidelberg Univ, Med Fac, European Ctr Angiosci, Dept Vasc Biol & Tumor Angiogenesis, Mannheim, Germany
[3] Univ Paris Cite, Inst Pasteur, CNRS UMR 3738, Machine Learning Integrat Genom Grp, Paris, France
[4] Altos Labs, Granta Pk, Cambridge, England
关键词
PIONEER TRANSCRIPTION FACTORS; PAIRED EXPRESSION; OPEN CHROMATIN; DNA-BINDING; PROTEIN; RNA; ACCESSIBILITY; ELEMENTS; DATABASE; DISCOVERY;
D O I
10.1038/s41576-023-00618-5
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The interplay between chromatin, transcription factors and genes generates complex regulatory circuits that can be represented as gene regulatory networks (GRNs). The study of GRNs is useful to understand how cellular identity is established, maintained and disrupted in disease. GRNs can be inferred from experimental data - historically, bulk omics data - and/or from the literature. The advent of single-cell multi-omics technologies has led to the development of novel computational methods that leverage genomic, transcriptomic and chromatin accessibility information to infer GRNs at an unprecedented resolution. Here, we review the key principles of inferring GRNs that encompass transcription factor-gene interactions from transcriptomics and chromatin accessibility data. We focus on the comparison and classification of methods that use single-cell multimodal data. We highlight challenges in GRN inference, in particular with respect to benchmarking, and potential further developments using additional data modalities. Regulatory circuits of gene expression can be represented as gene regulatory networks (GRNs) that are useful to understand cellular identity and disease. Here, the authors review the computational methods used to infer GRNs - in particular from single-cell multi-omics data - as well as the biological insights that they can provide, and methods for their downstream analysis and experimental assessment.
引用
收藏
页码:739 / 754
页数:16
相关论文
共 50 条
  • [21] Multi-omics regulatory network inference in the presence of missing data
    Henao, Juan D.
    Lauber, Michael
    Azevedo, Manuel
    Grekova, Anastasiia
    Theis, Fabian
    List, Markus
    Ogris, Christoph
    Schubert, Benjamin
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [22] Integration of Multi-Omics Data for Gene Regulatory Network Inference and Application to Breast Cancer
    Yuan, Lin
    Guo, Le-Hang
    Yuan, Chang-An
    Zhang, Youhua
    Han, Kyungsook
    Nandi, Asoke K.
    Honig, Barry
    Huang, De-Shuang
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (03) : 782 - 791
  • [23] Advances in single-cell multi-omics profiling
    Bai, Dongsheng
    Peng, Jinying
    Yi, Chengqi
    RSC CHEMICAL BIOLOGY, 2021, 2 (02): : 441 - 449
  • [24] scMoC: single-cell multi-omics clustering
    Eltager, Mostafa
    Abdelaal, Tamim
    Mahfouz, Ahmed
    Reinders, Marcel J. T.
    BIOINFORMATICS ADVANCES, 2022, 2 (01):
  • [25] Single-Cell Technologies: Advances in Single-Cell Migration and Multi-Omics
    Moarefian, Maryam
    Capossela, Antonia McDonnell
    Eom, Ryan
    Aran, Kiana
    GEN BIOTECHNOLOGY, 2022, 1 (03): : 246 - 261
  • [26] Microtechnologies for single-cell and spatial multi-omics
    Yanxiang Deng
    Zhiliang Bai
    Rong Fan
    Nature Reviews Bioengineering, 2023, 1 (10): : 769 - 784
  • [27] Single-cell multi-omics analysis identifies context-specific gene regulatory gates and mechanisms
    Malekpour, Seyed Amir
    Haghverdi, Laleh
    Sadeghi, Mehdi
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [28] Single-Cell Multi-omics: An Engine for New Quantitative Models of Gene Regulation
    Packer, Jonathan
    Trapnell, Cole
    TRENDS IN GENETICS, 2018, 34 (09) : 653 - 665
  • [29] Integrated Fluidic Circuits for Single-Cell Omics and Multi-omics Applications
    Lynch, Mark
    Ramalingam, Naveen
    SINGLE MOLECULE AND SINGLE CELL SEQUENCING, 2019, 1129 : 19 - 26
  • [30] Arsenal of single-cell multi-omics methods expanded
    Tang, Lin
    NATURE METHODS, 2021, 18 (08) : 858 - 858