Gene regulatory network inference in the era of single-cell multi-omics

被引:107
|
作者
Badia-i-Mompel, Pau [1 ]
Wessels, Lorna [1 ,2 ]
Mueller-Dott, Sophia [1 ]
Trimbour, Remi [1 ,3 ]
Flores, Ricardo Ramirez O. [1 ]
Argelaguet, Ricard [4 ]
Saez-Rodriguez, Julio [1 ]
机构
[1] Heidelberg Univ, Heidelberg Univ Hosp, Inst Computat Biomed, Fac Med, Heidelberg, Germany
[2] MannHeim Heidelberg Univ, Med Fac, European Ctr Angiosci, Dept Vasc Biol & Tumor Angiogenesis, Mannheim, Germany
[3] Univ Paris Cite, Inst Pasteur, CNRS UMR 3738, Machine Learning Integrat Genom Grp, Paris, France
[4] Altos Labs, Granta Pk, Cambridge, England
关键词
PIONEER TRANSCRIPTION FACTORS; PAIRED EXPRESSION; OPEN CHROMATIN; DNA-BINDING; PROTEIN; RNA; ACCESSIBILITY; ELEMENTS; DATABASE; DISCOVERY;
D O I
10.1038/s41576-023-00618-5
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The interplay between chromatin, transcription factors and genes generates complex regulatory circuits that can be represented as gene regulatory networks (GRNs). The study of GRNs is useful to understand how cellular identity is established, maintained and disrupted in disease. GRNs can be inferred from experimental data - historically, bulk omics data - and/or from the literature. The advent of single-cell multi-omics technologies has led to the development of novel computational methods that leverage genomic, transcriptomic and chromatin accessibility information to infer GRNs at an unprecedented resolution. Here, we review the key principles of inferring GRNs that encompass transcription factor-gene interactions from transcriptomics and chromatin accessibility data. We focus on the comparison and classification of methods that use single-cell multimodal data. We highlight challenges in GRN inference, in particular with respect to benchmarking, and potential further developments using additional data modalities. Regulatory circuits of gene expression can be represented as gene regulatory networks (GRNs) that are useful to understand cellular identity and disease. Here, the authors review the computational methods used to infer GRNs - in particular from single-cell multi-omics data - as well as the biological insights that they can provide, and methods for their downstream analysis and experimental assessment.
引用
收藏
页码:739 / 754
页数:16
相关论文
共 50 条
  • [1] Functional inference of gene regulation using single-cell multi-omics
    Kartha, Vinay K.
    Duarte, Fabiana M.
    Hu, Yan
    Ma, Sai
    Chew, Jennifer G.
    Lareau, Caleb A.
    Earl, Andrew
    Burkett, Zach D.
    Kohlway, Andrew S.
    Lebofsky, Ronald
    Buenrostr, Jason D.
    CELL GENOMICS, 2022, 2 (09):
  • [2] Charting plant gene functions in the multi-omics and single-cell era
    Depuydt, Thomas
    De Rybel, Bert
    Vandepoele, Klaas
    TRENDS IN PLANT SCIENCE, 2023, 28 (03) : 283 - 296
  • [3] Multi-omics single-cell data integration and regulatory inference with graph-linked embedding
    Cao, Zhi-Jie
    Gao, Ge
    NATURE BIOTECHNOLOGY, 2022, 40 (10) : 1458 - +
  • [4] REUNION: transcription factor binding prediction and regulatory association inference from single-cell multi-omics data
    Yang, Yang
    Pe'er, Dana
    BIOINFORMATICS, 2024, 40 : i567 - i575
  • [5] Integration of Multi-Omics Data for Gene Regulatory Network Inference and Application to Breast Cancer
    Yuan, Lin
    Guo, Le-Hang
    Yuan, Chang-An
    Zhang, Youhua
    Han, Kyungsook
    Nandi, Asoke K.
    Honig, Barry
    Huang, De-Shuang
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (03) : 782 - 791
  • [6] Computational strategies for single-cell multi-omics integration
    Adossa, Nigatu
    Khan, Sofia
    Rytkonen, Kalle T.
    Elo, Laura L.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 2588 - 2596
  • [7] Intricacies of single-cell multi-omics data integration
    Rautenstrauch, Pia
    Vlot, Anna Hendrika Cornelia
    Saran, Sepideh
    Ohler, Uwe
    TRENDS IN GENETICS, 2022, 38 (02) : 128 - 139
  • [8] Applications of single-cell multi-omics in liver cancer
    Peeters, Frederik
    Cappuyns, Sarah
    Pique-Gili, Marta
    Phillips, Gino
    Verslype, Chris
    Lambrechts, Diether
    Dekervel, Jeroen
    JHEP REPORTS, 2024, 6 (07)
  • [9] scapGNN: A graph neural network-based framework for active pathway and gene module inference from single-cell multi-omics data
    Han, Xudong
    Wang, Bing
    Situ, Chenghao
    Qi, Yaling
    Zhu, Hui
    Li, Yan
    Guo, Xuejiang
    PLOS BIOLOGY, 2023, 21 (11)
  • [10] Single Cell Atlas: a single-cell multi-omics human cell encyclopedia
    Pan, Lu
    Parini, Paolo
    Tremmel, Roman
    Loscalzo, Joseph
    Lauschke, Volker
    Maron, Bradley
    Paci, Paola
    Ernberg, Ingemar
    Tan, Nguan Soon
    Liao, Zehuan
    Yin, Weiyao
    Rengarajan, Sundararaman
    Li, Xuexin
    GENOME BIOLOGY, 2024, 25 (01)