Design and experimental analysis of low wind speed rotary piezoelectric energy harvester

被引:2
|
作者
Narolia, Tejkaran [1 ,2 ]
Mandaloi, Gangaram [1 ,3 ]
Gupta, Vijay Kumar [1 ]
机构
[1] PDPM Indian Inst Informat Technol Design & Mfg, Mech Engn Discipline, Jabalpur 482005, India
[2] Rabindranath Tagore Univ, Dept Mech Engn, Raisen 464993, India
[3] Rewa Engn Coll, Dept Mech Engn, Rewa 486002, India
关键词
Low wind speed; Windmill; Energy harvesting; Piezoelectric material; Wireless sensor; IoT;
D O I
10.1007/s10999-023-09663-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The Industry 4.0 has focus on connected devices and machines. It needs a number of sensors connected with each other and transfer of the information. Most of the sensors and sensor nodes require low power. In remote areas, where the power is limited, self-powered devices are more useful. Wind is available everywhere but the wind speed varies from place to place. Windmills are being used to generate electric power from the wind, however, is restricted due to large size and high cost. In this paper, it is proposed to develop a magnetic excited rotary harvester to harvest power at low wind speed. This can solve one of the major problems of frequent replacement of the battery in remote devices required for sensor and sensor nodes. To convert the rotation of the windmill to electric power, the rotation energy is converted to vibrating motion of a piezoelectric cantilever beam. The vibrations in the beam are generated with the help of interaction of magnetic field on the stator and blade mounted on the rotating shaft. The vibrations are then converted to electric charge due to the property of the piezoelectric material. An analytical model is developed and the results are compared with experiments. It is observed that at minimum wind speed of 2 m/s the estimated power is 1.06 mW while at a normal wind speed of 5 m/s power is calculated as 2.21 mW from the device.
引用
收藏
页码:793 / 804
页数:12
相关论文
共 50 条
  • [41] Modeling and Design of a Piezoelectric Nonlinear Aeroelastic Energy Harvester
    Elahi, Hassan
    Eugeni, Marco
    Lampani, Luca
    Gaudenzi, Paolo
    INTEGRATED FERROELECTRICS, 2020, 211 (01) : 132 - 151
  • [42] A new design to improve bandwidth of piezoelectric energy harvester
    Gulec, Hakan
    Gurbuz, Mevlut
    Toktas, Ayse Gul
    Gul, Mert
    Koc, Burhanettin
    Dogan, Aydin
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2020, 56 (01) : 117 - 126
  • [43] Low-Wind-Speed Galloping Wind Energy Harvester Based on a W-Shaped Bluff Body
    Zheng, Jianfeng
    Li, Zichang
    Zhang, Han
    ENERGIES, 2024, 17 (04)
  • [44] Design of a broadband piezoelectric energy harvester with piecewise nonlinearity
    Zou, Donglin
    Liu, Gaoyu
    Rao, Zhushi
    Zi, Yunlong
    Liao, Wei-Hsin
    SMART MATERIALS AND STRUCTURES, 2021, 30 (08)
  • [45] Design and test of liquid sloshing piezoelectric energy harvester
    Jing, Dong
    Hu, Shuaizhao
    Nan, Yang
    Ma, Chicheng
    Zhang, Zhongwei
    Shao, Mingyu
    Shao, Sujuan
    ADVANCES IN MECHANICAL ENGINEERING, 2024, 16 (05)
  • [46] Design of a Bimorph Piezoelectric Energy Harvester for Railway Monitoring
    Li, Jingcheng
    Jang, Shinae
    Tang, Jiong
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2012, 32 (06) : 661 - 668
  • [47] Novel Two-Stage Piezoelectric-Based Electrical Energy Generators for Low and Variable Speed Rotary Machinery
    Rastegar, J.
    Murray, R.
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2010, PTS 1 AND 2, 2010, 7643
  • [48] Novel Two-Stage Piezoelectric-Based Electrical Energy Generators for Low and Variable Speed Rotary Machinery
    Rastegar, J.
    Murray, R.
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2009, 2009, 7288
  • [49] A piezoelectric energy harvester with inner beam adapting to low and high wind speeds: modeling, simulation and experiment
    Jia, Jinda
    Shan, Xiaobiao
    Xie, Tao
    SMART MATERIALS AND STRUCTURES, 2023, 32 (05)
  • [50] FEM Simulation of Ocarina-Shaped Piezoelectric Wind Energy Harvester
    Liu, Yanming
    Lin, Ren
    Chen, Shujian
    Duan, Wenhui
    PROCEEDINGS OF THE 25TH AUSTRALASIAN CONFERENCE ON MECHANICS OF STRUCTURES AND MATERIALS (ACMSM25), 2020, 37 : 1071 - 1076