Hyperspectral Remote Sensing for Phenotyping the Physiological Drought Response of Common and Tepary Bean

被引:19
|
作者
Wong, Christopher Y. S. [1 ]
Gilbert, Matthew E. [1 ]
Pierce, Marshall A. [1 ]
Parker, Travis A. [1 ]
Palkovic, Antonia [1 ]
Gepts, Paul [1 ]
Magney, Troy S. [1 ]
Buckley, Thomas N. [1 ]
机构
[1] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA
基金
美国国家科学基金会; 美国农业部;
关键词
LEAST-SQUARES-REGRESSION; WATER STATUS; PLANT; REFLECTANCE; TRAITS; PHENOMICS; TOOL;
D O I
10.34133/plantphenomics.0021
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Proximal remote sensing offers a powerful tool for high-throughput phenotyping of plants for assessing stress response. Bean plants, an important legume for human consumption, are often grown in regions with limited rainfall and irrigation and are therefore bred to further enhance drought tolerance. We assessed physiological (stomatal conductance and predawn and midday leaf water potential) and groundand tower-based hyperspectral remote sensing (400 to 2,400 nm and 400 to 900 nm, respectively) measurements to evaluate drought response in 12 common bean and 4 tepary bean genotypes across 3 field campaigns (1 predrought and 2 post-drought). Hyperspectral data in partial least squares regression models predicted these physiological traits (R2 = 0.20 to 0.55; root mean square percent error 16% to 31%). Furthermore, ground-based partial least squares regression models successfully ranked genotypic drought responses similar to the physiologically based ranks. This study demonstrates applications of high-resolution hyperspectral remote sensing for predicting plant traits and phenotyping drought response across genotypes for vegetation monitoring and breeding population screening.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Early Metabolic and Photosynthetic Responses to Drought Stress in Common and Tepary Bean
    Traub, Jesse
    Kelly, James D.
    Loescher, Wayne
    CROP SCIENCE, 2017, 57 (03) : 1670 - 1686
  • [2] Hyperspectral remote sensing of grapevine drought stress
    M. Zovko
    U. Žibrat
    M. Knapič
    M. Bubalo Kovačić
    D. Romić
    Precision Agriculture, 2019, 20 : 335 - 347
  • [3] Hyperspectral remote sensing of grapevine drought stress
    Zovko, M.
    Zibrat, U.
    Knapic, M.
    Kovacic, M. Bubalo
    Romic, D.
    PRECISION AGRICULTURE, 2019, 20 (02) : 335 - 347
  • [4] UAV remote sensing for phenotyping drought tolerance in peanuts
    Balota, Maria
    Oakes, Joseph
    AUTONOMOUS AIR AND GROUND SENSING SYSTEMS FOR AGRICULTURAL OPTIMIZATION AND PHENOTYPING II, 2017, 10218
  • [5] Physiological Responses of Common Bean Genotypes to Drought Stress
    Mladenov, Petko
    Aziz, Sibel
    Topalova, Elena
    Renaut, Jenny
    Planchon, Sebastien
    Raina, Aamir
    Tomlekova, Nasya
    AGRONOMY-BASEL, 2023, 13 (04):
  • [6] Physiological and Biochemical Responses of Common Bush Bean to Drought
    Sanchez-Reinoso, Alefsi David
    Ligarreto-Moreno, Gustavo Adolfo
    Restrepo-Diaz, Hermann
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2018, 46 (02) : 393 - 401
  • [7] Agronomic and morpho-physiological response of Andean genotypes of common bean to terminal drought
    Hamabwe, Swivia M.
    Otieno, Nicholas A.
    Odhiambo, Judith A.
    Parker, Travis
    Kamfwa, Kelvin
    CROP SCIENCE, 2024, 64 (06) : 3521 - 3532
  • [8] Phenotyping for Effects of Drought Levels in Quinoa Using Remote Sensing Tools
    Lupa-Condo, Nerio E.
    Lope-Ccasa, Frans C.
    Salazar-Joyo, Angel A.
    Gutierrez-Rosales, Raymundo O.
    Jellen, Eric N.
    Hansen, Neil C.
    Anculle-Arenas, Alberto
    Zeballos, Omar
    Llasaca-Calizaya, Natty Wilma
    Mayta-Anco, Mayela Elizabeth
    AGRONOMY-BASEL, 2024, 14 (09):
  • [9] Evaluation of the tepary bean (Phaseolus acutifolius) CIAT germplasm collection for response to Bean Common Mosaic Necrosis Virus (BCMNV)
    Vargas, A.
    Porch, T.
    Beaver, J.
    PHYTOPATHOLOGY, 2015, 105 (03)
  • [10] Selective Phenotyping Traits Related to Multiple Stress and Drought Response in Dry Bean
    Trapp, Jennifer J.
    Urrea, Carlos A.
    Zhou, Jianfeng
    Khot, Lav R.
    Sankaran, Sindhu
    Miklas, Phillip N.
    CROP SCIENCE, 2016, 56 (04) : 1460 - 1472