Mitochondrial DNA methylation in metabolic associated fatty liver disease

被引:9
作者
Mposhi, Archibold [1 ,2 ]
Cortes-Mancera, Fabian [1 ,3 ]
Heegsma, Janette [2 ]
de Meijer, Vincent E. [4 ]
van de Sluis, Bart [5 ]
Sydor, Svenja [6 ,7 ]
Bechmann, Lars P. [6 ,7 ]
Theys, Claudia [8 ]
de Rijk, Peter [8 ,9 ]
De Pooter, Tim [8 ,9 ]
Vanden Berghe, Wim [8 ]
Ince, Ikbal Agah [1 ,10 ]
Faber, Klaas Nico [2 ]
Rots, Marianne G. [1 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Pathol & Med Biol, Groningen, Netherlands
[2] Univ Groningen, Univ Med Ctr Groningen, Dept Gastroenterol & Hepatol, Groningen, Netherlands
[3] Inst Tecnol Metropolitano, Dept Ciencias Aplicadas, Medellin, Colombia
[4] Univ Groningen, Univ Med Ctr Groningen, Dept Surg, Div Hepatopancreato Biliary Surg & Liver Transplan, Groningen, Netherlands
[5] Univ Groningen, Univ Med Ctr Groningen, Sect Mol Genet, Groningen, Netherlands
[6] Univ Hosp Knappschaftskrankenhaus, Dept Internal Med, Bochum, Germany
[7] Ruhr Univ Bochum, Bochum, Germany
[8] Univ Antwerp, Dept Biomed Sci, Antwerp, Belgium
[9] Univ Antwerp VIB, UAntwerp Ctr Mol Neurol, Neur Support Facil, Antwerp, Belgium
[10] Acibadem Mehmet Ali Aydinlar Univ, Sch Med, Dept Med Microbiol, Istanbul, Turkiye
来源
FRONTIERS IN NUTRITION | 2023年 / 10卷
关键词
liver steatosis; NAFLD; NASH; ND6; mtDNA methylation; GENE-EXPRESSION; CPG METHYLATION; TRANSCRIPTION; STEATOSIS; PROMOTER;
D O I
10.3389/fnut.2023.964337
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
IntroductionHepatic lipid accumulation and mitochondrial dysfunction are hallmarks of metabolic associated fatty liver disease (MAFLD), yet molecular parameters underlying MAFLD progression are not well understood. Differential methylation within the mitochondrial DNA (mtDNA) has been suggested to be associated with dysfunctional mitochondria, also during progression to Metabolic Steatohepatitis (MeSH). This study further investigates whether mtDNA methylation is associated with hepatic lipid accumulation and MAFLD. MethodsHepG2 cells were constructed to stably express mitochondria-targeted viral and prokaryotic cytosine DNA methyltransferases (mtM.CviPI or mtM.SssI for GpC or CpG methylation, respectively). A catalytically inactive variant (mtM.CviPI-Mut) was constructed as a control. Mouse and human patients' samples were also investigated. mtDNA methylation was assessed by pyro- or nanopore sequencing. Results and discussionDifferentially induced mtDNA hypermethylation impaired mitochondrial gene expression and metabolic activity in HepG2-mtM.CviPI and HepG2-mtM.SssI cells and was associated with increased lipid accumulation, when compared to the controls. To test whether lipid accumulation causes mtDNA methylation, HepG2 cells were subjected to 1 or 2 weeks of fatty acid treatment, but no clear differences in mtDNA methylation were detected. In contrast, hepatic Nd6 mitochondrial gene body cytosine methylation and Nd6 gene expression were increased in mice fed a high-fat high cholesterol diet (HFC for 6 or 20 weeks), when compared to controls, while mtDNA content was unchanged. For patients with simple steatosis, a higher ND6 methylation was confirmed using Methylation Specific PCR, but no additional distinctive cytosines could be identified using pyrosequencing. This study warrants further investigation into a role for mtDNA methylation in promoting mitochondrial dysfunction and impaired lipid metabolism in MAFLD.
引用
收藏
页数:17
相关论文
共 70 条
[1]  
Afsharzadeh D., 2020, EXTRACELLULAR VESICL, P83
[2]  
Alkhouri Naim, 2009, Expert Rev Gastroenterol Hepatol, V3, P445, DOI 10.1586/egh.09.32
[3]   Mitochondrial DNA alterations may influence the cisplatin responsiveness of oral squamous cell carcinoma [J].
Aminuddin, Amnani ;
Pei Yuen Ng ;
Leong, Chee-Onn ;
Chua, Eng Wee .
SCIENTIFIC REPORTS, 2020, 10 (01)
[4]   Non-CpG Methylation of the PGC-1α Promoter through DNMT3B Controls Mitochondrial Density [J].
Barres, Romain ;
Osler, Megan E. ;
Yan, Jie ;
Rune, Anna ;
Fritz, Tomas ;
Caidahl, Kenneth ;
Krook, Anna ;
Zierath, Juleen R. .
CELL METABOLISM, 2009, 10 (03) :189-198
[5]   Evidence for Mitochondrial Genome Methylation in the Yeast Candida albicans: A Potential Novel Epigenetic Mechanism Affecting Adaptation and Pathogenicity? [J].
Bartelli, Thais F. ;
Bruno, Danielle C. F. ;
Briones, Marcelo R. S. .
FRONTIERS IN GENETICS, 2018, 9
[6]   CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL [J].
Bartuzi, Paulina ;
Billadeau, Daniel D. ;
Favier, Robert ;
Rong, Shunxing ;
Dekker, Daphne ;
Fedoseienko, Alina ;
Fieten, Hille ;
Wijers, Melinde ;
Levels, Johannes H. ;
Huijkman, Nicolette ;
Kloosterhuis, Niels ;
van der Molen, Henk ;
Brufau, Gemma ;
Groen, Albert K. ;
Elliott, Alison M. ;
Kuivenhoven, Jan Albert ;
Plecko, Barbara ;
Grangl, Gernot ;
McGaughran, Julie ;
Horton, Jay D. ;
Burstein, Ezra ;
Hofker, Marten H. ;
van de Sluis, Bart .
NATURE COMMUNICATIONS, 2016, 7
[7]   Structure, mechanism, and regulation of mitochondrial DNA transcription initiation [J].
Basu, Urmimala ;
Bostwick, Alicia M. ;
Das, Kalyan ;
Dittenhafer-Reed, Kristin E. ;
Patel, Smita S. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2020, 295 (52) :18406-18425
[8]   KNIME:: The Konstanz Information Miner [J].
Berthold, Michael R. ;
Cebron, Nicolas ;
Dill, Fabian ;
Gabriel, Thomas R. ;
Koetter, Tobias ;
Meinl, Thorsten ;
Ohl, Peter ;
Sieb, Christoph ;
Thiel, Kilian ;
Wiswedel, Bernd .
DATA ANALYSIS, MACHINE LEARNING AND APPLICATIONS, 2008, :319-326
[9]   Single-molecule mitochondrial DNA sequencing shows no evidence of CpG methylation in human cells and tissues [J].
Bicci, Iacopo ;
Calabrese, Claudia ;
Golder, Zoe J. ;
Gomez-Duran, Aurora ;
Chinnery, Patrick F. .
NUCLEIC ACIDS RESEARCH, 2021, 49 (22) :12757-12768
[10]   Effects of air pollution on mitochondrial function, mitochondrial DNA methylation, and mitochondrial peptide expression [J].
Breton, Carrie V. ;
Song, Ashley Y. ;
Xiao, Jialin ;
Kim, Su-Jeong ;
Mehta, Hemal H. ;
Wan, Junxiang ;
Yen, Kelvin ;
Sioutas, Constantinos ;
Lurmann, Fred ;
Xue, Shanyan ;
Morgan, Todd E. ;
Zhang, Junfeng ;
Cohen, Pinchas .
MITOCHONDRION, 2019, 46 :22-29