Topological data analysis and machine learning

被引:14
作者
Leykam, Daniel [1 ,4 ]
Angelakis, Dimitris G. [1 ,2 ,3 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
[2] Tech Univ Crete, Sch Elect & Comp Engn, Iraklion, Greece
[3] AngelQ Quantum Comp, Singapore, Singapore
[4] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
来源
ADVANCES IN PHYSICS-X | 2023年 / 8卷 / 01期
基金
新加坡国家研究基金会;
关键词
Machine learning; strongly correlated quantum systems; persistent homology; phase transition; quantum computing; condensed matter physics; topological phase; PERSISTENT HOMOLOGY; STABILITY; COMPLEXES; ENTROPY;
D O I
10.1080/23746149.2023.2202331
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Topological data analysis refers to approaches for systematically and reliably computing abstract 'shapes' of complex data sets. There are various applications of topological data analysis in life and data sciences, with growing interest among physicists. We present a concise review of applications of topological data analysis to physics and machine learning problems in physics including the unsupervised detection of phase transitions. We finish with a preview of anticipated directions for future research.
引用
收藏
页数:24
相关论文
共 114 条
  • [21] Machine learning for quantum matter
    Carrasquilla, Juan
    [J]. ADVANCES IN PHYSICS-X, 2020, 5 (01):
  • [22] Topological quantum phase transitions retrieved through unsupervised machine learning
    Che, Yanming
    Gneiting, Clemens
    Liu, Tao
    Nori, Franco
    [J]. PHYSICAL REVIEW B, 2020, 102 (13)
  • [23] An entropy-based persistence barcode
    Chintakunta, Harish
    Gentimis, Thanos
    Gonzalez-Diaz, Rocio
    Jimenez, Maria-Jose
    Krim, Hamid
    [J]. PATTERN RECOGNITION, 2015, 48 (02) : 391 - 401
  • [24] Persistent homology and string vacua
    Cirafici, Michele
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (03):
  • [25] Stability of persistence diagrams
    Cohen-Steiner, David
    Edelsbrunner, Herbert
    Harer, John
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 37 (01) : 103 - 120
  • [26] Quantitative and interpretable order parameters for phase transitions from persistent homology
    Cole, Alex
    Loges, Gregory J.
    Shiu, Gary
    [J]. PHYSICAL REVIEW B, 2021, 104 (10)
  • [27] Topological data analysis for the string landscape
    Cole, Alex
    Shiu, Gary
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (03)
  • [28] Persistent homology and non-Gaussianity
    Cole, Alex
    Shiu, Gary
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (03):
  • [29] Dawid A, 2023, Arxiv, DOI arXiv:2204.04198
  • [30] Homological analysis of multi-qubit entanglement
    Di Pierro, Alessandra
    Mancini, Stefano
    Memarzadeh, Laleh
    Mengoni, Riccardo
    [J]. EPL, 2018, 123 (03)