Topological data analysis and machine learning

被引:14
作者
Leykam, Daniel [1 ,4 ]
Angelakis, Dimitris G. [1 ,2 ,3 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
[2] Tech Univ Crete, Sch Elect & Comp Engn, Iraklion, Greece
[3] AngelQ Quantum Comp, Singapore, Singapore
[4] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
来源
ADVANCES IN PHYSICS-X | 2023年 / 8卷 / 01期
基金
新加坡国家研究基金会;
关键词
Machine learning; strongly correlated quantum systems; persistent homology; phase transition; quantum computing; condensed matter physics; topological phase; PERSISTENT HOMOLOGY; STABILITY; COMPLEXES; ENTROPY;
D O I
10.1080/23746149.2023.2202331
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Topological data analysis refers to approaches for systematically and reliably computing abstract 'shapes' of complex data sets. There are various applications of topological data analysis in life and data sciences, with growing interest among physicists. We present a concise review of applications of topological data analysis to physics and machine learning problems in physics including the unsupervised detection of phase transitions. We finish with a preview of anticipated directions for future research.
引用
收藏
页数:24
相关论文
共 114 条
  • [11] Computing Robustness and Persistence for Images
    Bendich, Paul
    Edelsbrunner, Herbert
    Kerber, Michael
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2010, 16 (06) : 1251 - 1260
  • [12] Berry DW, 2023, Arxiv, DOI arXiv:2209.13581
  • [13] Analyzing collective motion with machine learning and topology
    Bhaskar, Dhananjay
    Manhart, Angelika
    Milzman, Jesse
    Nardini, John T.
    Storey, Kathleen M.
    Topaz, Chad M.
    Ziegelmeier, Lori
    [J]. CHAOS, 2019, 29 (12)
  • [14] A persistence landscapes toolbox for topological statistics
    Bubenik, Peter
    Dlotko, Pawel
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2017, 78 : 91 - 114
  • [15] Bubenik P, 2015, J MACH LEARN RES, V16, P77
  • [16] Machine learning and the physical sciences
    Carleo, Giuseppe
    Cirac, Ignacio
    Cranmer, Kyle
    Daudet, Laurent
    Schuld, Maria
    Tishby, Naftali
    Vogt-Maranto, Leslie
    Zdeborova, Lenka
    [J]. REVIEWS OF MODERN PHYSICS, 2019, 91 (04)
  • [17] Topological methods for data modelling
    Carlsson, Gunnar
    [J]. NATURE REVIEWS PHYSICS, 2020, 2 (12) : 697 - 708
  • [18] Zigzag Persistence
    Carlsson, Gunnar
    de Silva, Vin
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (04) : 367 - 405
  • [19] The Theory of Multidimensional Persistence
    Carlsson, Gunnar
    Zomorodian, Afra
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (01) : 71 - 93
  • [20] TOPOLOGY AND DATA
    Carlsson, Gunnar
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (02) : 255 - 308