Topological data analysis and machine learning

被引:14
作者
Leykam, Daniel [1 ,4 ]
Angelakis, Dimitris G. [1 ,2 ,3 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
[2] Tech Univ Crete, Sch Elect & Comp Engn, Iraklion, Greece
[3] AngelQ Quantum Comp, Singapore, Singapore
[4] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
来源
ADVANCES IN PHYSICS-X | 2023年 / 8卷 / 01期
基金
新加坡国家研究基金会;
关键词
Machine learning; strongly correlated quantum systems; persistent homology; phase transition; quantum computing; condensed matter physics; topological phase; PERSISTENT HOMOLOGY; STABILITY; COMPLEXES; ENTROPY;
D O I
10.1080/23746149.2023.2202331
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Topological data analysis refers to approaches for systematically and reliably computing abstract 'shapes' of complex data sets. There are various applications of topological data analysis in life and data sciences, with growing interest among physicists. We present a concise review of applications of topological data analysis to physics and machine learning problems in physics including the unsupervised detection of phase transitions. We finish with a preview of anticipated directions for future research.
引用
收藏
页数:24
相关论文
共 114 条
  • [1] Adams H, 2017, J MACH LEARN RES, V18
  • [2] Representation of the fermionic boundary operator
    Akhalwaya, Ismail Yunus
    He, Yang-Hui
    Horesh, Lior
    Jejjala, Vishnu
    Kirby, William
    Naidoo, Kugendran
    Ubaru, Shashanka
    [J]. PHYSICAL REVIEW A, 2022, 106 (02)
  • [3] Akhalwaya IY, 2024, Arxiv, DOI arXiv:2209.09371
  • [4] Machine Learning in High Energy Physics Community White Paper
    Albertsson, Kim
    Altoe, Piero
    Anderson, Dustin
    Andrews, Michael
    Espinosa, Juan Pedro Araque
    Aurisano, Adam
    Basara, Laurent
    Bevan, Adrian
    Bhimji, Wahid
    Bonacorsi, Daniele
    Calafiura, Paolo
    Campanelli, Mario
    Capps, Louis
    Carminati, Federico
    Carrazza, Stefano
    Childers, Taylor
    Coniavitis, Elias
    Cranmer, Kyle
    David, Claire
    Davis, Douglas
    Duarte, Javier
    Erdmann, Martin
    Eschle, Jonas
    Farbin, Amir
    Feickert, Matthew
    Castro, Nuno Filipe
    Fitzpatrick, Conor
    Floris, Michele
    Forti, Alessandra
    Garra-Tico, Jordi
    Gemmler, Jochen
    Girone, Maria
    Glaysher, Paul
    Gleyzer, Sergei
    Gligorov, Vladimir
    Golling, Tobias
    Graw, Jonas
    Gray, Lindsey
    Greenwood, Dick
    Hacker, Thomas
    Harvey, John
    Hegner, Benedikt
    Heinrich, Lukas
    Hooberman, Ben
    Junggeburth, Johannes
    Kagan, Michael
    Kane, Meghan
    Kanishchev, Konstantin
    Karpinski, Przemyslaw
    Kassabov, Zahari
    [J]. 18TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2017), 2018, 1085
  • [5] Ameneyro B, 2022, Arxiv, DOI arXiv:2202.12965
  • [6] Apers S, 2023, Arxiv, DOI arXiv:2211.09618
  • [7] Topological analysis of tapped granular media using persistent homology
    Ardanza-Trevijano, S.
    Zuriguel, Iker
    Arevalo, Roberto
    Maza, Diego
    [J]. PHYSICAL REVIEW E, 2014, 89 (05):
  • [8] On the stability of persistent entropy and new summary functions for topological data analysis
    Atienza, Nieves
    Gonzalez-Diaz, Rocio
    Soriano-Trigueros, Manuel
    [J]. PATTERN RECOGNITION, 2020, 107
  • [9] Bauer Ulrich, 2021, J. Appl. Comput. Topol, V5, P391, DOI [10.1007/s41468-021-00071-5, DOI 10.1007/S41468-021-00071-5]
  • [10] Experimental Deep Reinforcement Learning for Error-Robust Gate-Set Design on a Superconducting Quantum Computer
    Baum, Yuval
    Amico, Mirko
    Howell, Sean
    Hush, Michael
    Liuzzi, Maggie
    Mundada, Pranav
    Merkh, Thomas
    Carvalho, Andre R. R.
    Biercuk, Michael J.
    [J]. PRX QUANTUM, 2021, 2 (04):